Estimation of stress-strength reliability from exponentiated Fréchet distribution

In this paper, we are mainly concerned in estimating the reliability R = P(Y < X) in the exponentiated Fréchet distribution, recently proposed by Nadarajah and Kotz (2006), Acta Appl Math 92:97–111. The model arises as a generalization of the standard Fréchet distribution in the same way the exponentiated exponential distribution introduced by Gupta et al. (1998), Commun Stat Theory Methods 27:887–904. The maximum likelihood estimator and its asymptotic distribution are used to construct an asymptotic confidence interval of R. Assuming that the common scale and shape parameters are known, the maximum likelihood estimator, uniformly minimum variance unbiased estimator of R are discussed. Different methods and the corresponding confidence intervals are compared using Monte Carlo simulation. Using real data, we illustrate the procedure.

[1]  Siu-Keung Tse,et al.  Estimation of p(y , 1986 .

[2]  P. Hall Theoretical Comparison of Bootstrap Confidence Intervals , 1988 .

[3]  J. Leroy Folks,et al.  The Inverse Gaussian Distribution , 1989 .

[4]  John I. McCool,et al.  Inference on p{y , 1991 .

[5]  Adnan M. Awad,et al.  Estimation of p(y, 1986 .

[6]  Narayanaswamy Balakrishnan,et al.  Mixture inverse Gaussian distributions and its transformations, moments and applications , 2009 .

[7]  R. Kantam,et al.  Estimation of stress–strength reliability from inverse Rayleigh distribution , 2013 .

[8]  A. Jamjoom,et al.  Computing the Moments of Order Statistics from Independent Nonidentically Distributed Exponentiated Frechet Variables , 2012 .

[9]  H. Tong,et al.  On The Estimation of Pr {Y ⩽ X} for Exponential Families , 1977, IEEE Transactions on Reliability.

[10]  Y. S. Sathe,et al.  On estimating P(X > Y) for the exponential distribution , 1981 .

[11]  D. Kundu,et al.  Estimation of P(Y < X) for the Three-Parameter Generalized Exponential Distribution , 2008 .

[12]  Amjad D. Al-Nasser,et al.  Acceptance sampling plan based on truncated life tests for exponentiated fréchet distribution , 2013 .

[13]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[14]  Debasis Kundu,et al.  Estimation of P[Y < X] for generalized exponential distribution , 2005 .

[15]  Debasis Kundu,et al.  Comparison of Different Estimators of P [Y < X] for a Scaled Burr Type X Distribution , 2005 .

[16]  M. E. Ghitany,et al.  Estimation of reliability from Marshall–Olkin extended Lomax distributions , 2010 .

[17]  D. Kundu,et al.  Estimation of R=P(Y, 2009 .

[18]  Samuel Kotz,et al.  The Exponentiated Type Distributions , 2006 .

[19]  F. Downton The Estimation of Pr (Y < X) in the Normal Case , 1973 .

[20]  S. Ramakrishnan,et al.  Point and Interval Estimation of P(X < Y): The Normal Case with Common Coefficient of Variation , 1999 .

[21]  K. Rosaiah,et al.  A TWO-STAGE GROUP SAMPLING PLAN BASED ON TRUNCATED LIFE TESTS FOR A EXPONENTIATED FRÉCHET DISTRIBUTION , 2014 .

[22]  Debasis Kundu,et al.  Estimation of P[Y, 2006, IEEE Transactions on Reliability.

[23]  J. L. Folks,et al.  The Inverse Gaussian Distribution and its Statistical Application—A Review , 1978 .

[24]  Ramesh C. Gupta,et al.  RELIABILITY STUDIES OF THE SKEW-NORMAL DISTRIBUTION AND ITS APPLICATION TO A STRENGTH-STRESS MODEL , 2001 .

[25]  Ramesh C. Gupta,et al.  Estimation of pr (a’x>>b’y) in the mnltiyariate normal case , 1990 .

[26]  Adnan M. Awad,et al.  Some inference results on pr(x < y) in the bivariate exponential model , 1981 .

[27]  N. A. Mokhlis,et al.  Reliability of a Stress-Strength Model with Burr Type III Distributions , 2005 .

[28]  Seymour Geisser,et al.  Estimation of the Probability that Y , 1971 .

[29]  Calyampudi Radhakrishna Rao,et al.  Linear Statistical Inference and its Applications , 1967 .