Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands

[1]  S. B. Blackwell,et al.  MITIGATION , 2008, The Law of Damages in International Sales.

[2]  P. Ciais,et al.  Historical CO2 emissions from land use and land cover change and their uncertainty , 2020 .

[3]  P. Ciais,et al.  Historical CO2 emissions from land-use and land-cover change and their uncertainty , 2020 .

[4]  S. Page,et al.  Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100 , 2019, Nature Climate Change.

[5]  Matthew W. Jones,et al.  Global fire emissions buffered by the production of pyrogenic carbon , 2019, Nature Geoscience.

[6]  anonymous,et al.  Global review , 2019 .

[7]  H. Tian,et al.  Global Nitrous Oxide Emissions From Pasturelands and Rangelands: Magnitude, Spatiotemporal Patterns, and Attribution , 2019, Global Biogeochemical Cycles.

[8]  H. Chiang,et al.  The New Synthesis , 2019, Creatures of Cain.

[9]  Atul K. Jain,et al.  Reconciling global-model estimates and country reporting of anthropogenic forest CO2 sinks , 2018, Nature Climate Change.

[10]  P. Ciais,et al.  Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release , 2018, Nature Geoscience.

[11]  P. Ciais,et al.  Global soil organic carbon removal by water erosion under climate change and land use change during AD 1850–2005 , 2018, Biogeosciences.

[12]  J. Balesdent,et al.  Atmosphere–soil carbon transfer as a function of soil depth , 2018, Nature.

[13]  Jinfeng Chang,et al.  Temporal response of soil organic carbon after grassland‐related land‐use change , 2018, Global change biology.

[14]  R. Milo,et al.  The biomass distribution on Earth , 2018, Proceedings of the National Academy of Sciences.

[15]  M. Abdalla,et al.  Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands , 2018, Agriculture, ecosystems & environment.

[16]  E. Bork,et al.  Grazing and climate effects on soil organic carbon concentration and particle-size association in northern grasslands , 2018, Scientific Reports.

[17]  Bertrand Guenet,et al.  Large Differences in Global and Regional Total Soil Carbon Stock Estimates Based on SoilGrids, HWSD, and NCSCD: Intercomparison and Evaluation Based on Field Data From USA, England, Wales, and France , 2018 .

[18]  Daniel S. Goll,et al.  ORCHIDEE-MICT (v8.4.1), a land surface model for the high latitudes: model description and validation , 2017 .

[19]  Jinfeng Chang,et al.  Future productivity and phenology changes in European grasslands for different warming levels: implications for grassland management and carbon balance , 2017, Carbon Balance and Management.

[20]  Jinfeng Chang,et al.  Sensitivity of land use change emission estimates to historical land use and land cover mapping , 2017 .

[21]  Richard A. Houghton,et al.  Global and regional fluxes of carbon from land use and land cover change 1850–2015 , 2017 .

[22]  K. Paustian,et al.  Grassland management impacts on soil carbon stocks: a new synthesis. , 2017, Ecological applications : a publication of the Ecological Society of America.

[23]  S. Saatchi,et al.  Greenhouse gas emissions intensity of global croplands , 2017 .

[24]  A. Ducharne,et al.  ORCHIDEE-MICT ( v 8 . 4 . 1 ) , a land surface model for the high-latitudes : model description and validation , 2017 .

[25]  E. Stehfest,et al.  Anthropogenic land use estimates for the Holocene – HYDE 3.2 , 2016 .

[26]  P. Ciais,et al.  Accounting for the climate–carbon feedback in emission metrics , 2016 .

[27]  B. McConkey,et al.  Grazing improves C and N cycling in the Northern Great Plains: a meta-analysis , 2016, Scientific Reports.

[28]  Jinfeng Chang,et al.  Combining livestock production information in a process-based vegetation model to reconstruct the history of grassland management , 2016 .

[29]  P. Ciais,et al.  The compact Earth system model OSCAR v2.2: description and first results , 2016 .

[30]  J. Canadell,et al.  Greening of the Earth and its drivers , 2016 .

[31]  V. Chaplot,et al.  Overgrazing decreases soil organic carbon stocks the most under dry climates and low soil pH: A meta-analysis shows , 2016 .

[32]  Pete Smith,et al.  Greenhouse gas mitigation potentials in the livestock sector , 2016 .

[33]  Philippe Ciais,et al.  The contribution of China’s emissions to global climate forcing , 2016, Nature.

[34]  Pierre Friedlingstein,et al.  The terrestrial biosphere as a net source of greenhouse gases to the atmosphere , 2016, Nature.

[35]  Steven W. Running,et al.  Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization , 2016 .

[36]  Jinfeng Chang,et al.  Effect of climate change, CO2 trends, nitrogen addition, and land‐cover and management intensity changes on the carbon balance of European grasslands , 2016, Global change biology.

[37]  Thomas A. M. Pugh,et al.  Simulated carbon emissions from land-use change are substantially enhanced by accounting for agricultural management , 2015 .

[38]  Atul K. Jain,et al.  Global Carbon Budget 2015 , 2015 .

[39]  F. Joos,et al.  Quantifying differences in land use emission estimates implied by definition discrepancies , 2015 .

[40]  S. K. Lyons,et al.  Exploring the influence of ancient and historic megaherbivore extirpations on the global methane budget , 2015, Proceedings of the National Academy of Sciences.

[41]  Raphaël Martin,et al.  Modeled Changes in Potential Grassland Productivity and in Grass-Fed Ruminant Livestock Density in Europe over 1961–2010 , 2015, PloS one.

[42]  Jinfeng Chang,et al.  The greenhouse gas balance of European grasslands , 2010, Global change biology.

[43]  AArneth,et al.  Simulated carbon emissions from land-use change are substantially enhanced by accounting for agricultural management , 2015 .

[44]  P. Ciais,et al.  Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE – Part 2: Carbon emissions and the role of fires in the global carbon balance , 2014 .

[45]  P. Ciais,et al.  Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE – Part 1: simulating historical global burned area and fire regimes , 2014 .

[46]  G. V. D. Werf,et al.  Recent trends in African fires driven by cropland expansion and El Nino to La Nina transition , 2014 .

[47]  Pete Smith Do grasslands act as a perpetual sink for carbon? , 2014, Global change biology.

[48]  T. Gasser Attribution régionalisée des causes anthropiques du changement climatique , 2014 .

[49]  P. Jones,et al.  Updated high‐resolution grids of monthly climatic observations – the CRU TS3.10 Dataset , 2014 .

[50]  N. Batjes,et al.  Global Assessment of Human-induced Soil Degradation (GLASOD) , 2014 .

[51]  D. Shindell,et al.  Anthropogenic and Natural Radiative Forcing , 2014 .

[52]  Raphaël Martin,et al.  Incorporating grassland management in ORCHIDEE: model description and evaluation at 11 eddy-covariance sites in Europe , 2013 .

[53]  M. Obersteiner,et al.  Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems , 2013, Proceedings of the National Academy of Sciences.

[54]  R. Bright,et al.  Technical Note: Evaluating a simple parameterization of radiative shortwave forcing from surface albedo change , 2013 .

[55]  Megan McSherry,et al.  Effects of grazing on grassland soil carbon: a global review , 2013, Global change biology.

[56]  Pete Smith,et al.  The FAOSTAT database of greenhouse gas emissions from agriculture , 2013 .

[57]  H. Steinfeld,et al.  Tackling climate change through livestock : a global assessment of emissions and mitigation opportunities , 2013 .

[58]  Corinne Le Quéré,et al.  Carbon emissions from land use and land-cover change , 2012 .

[59]  J. Bruinsma,et al.  World agriculture towards 2030/2050: the 2012 revision , 2012 .

[60]  P. Jones,et al.  Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set , 2012 .

[61]  R. B. Jackson,et al.  A Large and Persistent Carbon Sink in the World’s Forests , 2011, Science.

[62]  J. Canadell,et al.  Attributing the increase in atmospheric CO2 to emitters and absorbers , 2010 .

[63]  Maosheng Zhao,et al.  Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009 , 2010, Science.

[64]  J. Soussana,et al.  Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. , 2010, Animal : an international journal of animal bioscience.

[65]  Pete Smith,et al.  Importance of methane and nitrous oxide for Europe's terrestrial greenhouse-gas balance , 2009 .

[66]  M. Claussen,et al.  Effects of anthropogenic land cover change on the carbon cycle of the last millennium , 2009 .

[67]  P. Poulton,et al.  Soil organic matter: its importance in sustainable agriculture and carbon dioxide fluxes. , 2009 .

[68]  Ke Zhang,et al.  Numerical Terradynamic Simulation Group 9-2008 Satellite-based model detection of recent climate-driven changes in northern high-latitude vegetation productivity , 2018 .

[69]  F. Schmidt Meta-Analysis , 2008 .

[70]  Jo Smith,et al.  Greenhouse gas mitigation in agriculture , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[71]  R. Rees,et al.  Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites , 2007 .

[72]  Masson-Delmotte,et al.  The Physical Science Basis , 2007 .

[73]  D. Chadwick,et al.  Greenhouse gas abatement strategies for animal husbandry , 2006 .

[74]  M. Kreuzer,et al.  Greenhouse gases and animal agriculture : an update : proceedings of the 2nd International Conference on Greenhouse Gases and Animal Agriculture, held in Zurich, Switzerland between 20 and 24 September 2005 , 2006 .

[75]  Fei Liu,et al.  Model Description and Validation , 2006 .

[76]  J. Welker,et al.  Soil Organic Carbon Composition in a Northern Mixed‐Grass Prairie , 2005 .

[77]  Edwin W. Pak,et al.  An extended AVHRR 8‐km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data , 2005 .

[78]  M. Ashmore Assessing the future global impacts of ozone on vegetation , 2005 .

[79]  Maosheng Zhao,et al.  Improvements of the MODIS terrestrial gross and net primary production global data set , 2005 .

[80]  Elizabeth C. Kent,et al.  Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century , 2003 .

[81]  Keith Paustian,et al.  Potential soil carbon sequestration in overgrazed grassland ecosystems , 2002 .

[82]  K. Paustian,et al.  GRASSLAND MANAGEMENT AND CONVERSION INTO GRASSLAND: EFFECTS ON SOIL CARBON , 2001 .

[83]  Z. Rawajfih,et al.  Land degradation in north-western Jordan: causes and processes , 1998 .

[84]  G. Velthof,et al.  Nitrous oxide emissions from grazed grassland , 1997 .

[85]  L. Guzzo,et al.  I. Description and first results , 1997 .

[86]  K. Johnson An Update. , 1984, Journal of food protection.