Austempering Experiments of Production Grade Silicon Solution Strengthened Ductile Iron

Austempered ductile iron provides a feasible way to produce high strength components. However, in heat treatments resulting in highest strengths some of the ductility is lost due to formation of bainitic carbides. The role of silicon in inhibiting the formation of iron carbides in as-cast ductile irons as well as its solution strengthening effect is well known and acknowledged in industry. The effect of silicon on austemperability, resulting microstructures, and mechanical properties of austempered ductile irons with silicon contents with 3.4-3.8 w-% was researched. Quenching and austempering heat treatments were carried out for production grade silicon solution strengthened ductile irons EN GJS 500-14. Results indicate, that it is possible to manufacture a fully ausferritic structure into a silicon solution strengthened matrix and indeed good ductility can be achieved in combination with ultimate tensile strength of 1600 MPa. Segregation of silicon reduces the solubility of carbon into the matrix especially close to the graphite nodules which reduce the stability of carbon stabilized austenite and leads into compromised machinability.