Finite Time Steady Vector Field Topology - Theoretical Foundation and 3D Case

Vector Field Topology is the standard approach for the analysis of asymptotic particle behavior in a vector field flow: A topological skeleton is separating the flow into regions by the movement of massless particles for an integration time converging to infinity. In some use cases however only a finite integration time is feasible. To this end, the idea of a topological skeleton with an augmented finite-time separation measure was introduced for 2D vector fields. We lay the theoretical foundation for that method and extend it to 3D vector fields. From the observation of steady vector fields in a temporal context we show the Galilean invariance of Vector Field Topology. In addition, we present a set of possible visualizations for finite-time topology on 3D topological skeletons. This is the authors preprint. The definitive version is available in the Eurographics digital library at http://diglib.eg.org/.

[1]  Bernd Hamann,et al.  Topological segmentation in three-dimensional vector fields , 2004, IEEE Transactions on Visualization and Computer Graphics.

[2]  Filip Sadlo,et al.  Visualizing Lagrangian Coherent Structures and Comparison to Vector Field Topology , 2009, Topology-Based Methods in Visualization II.

[3]  Suresh K. Lodha,et al.  Topology preserving compression of 2D vector fields , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[4]  Hans Hagen,et al.  A topology simplification method for 2D vector fields , 2000 .

[5]  J. Marsden,et al.  Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows , 2005 .

[6]  Hans-Christian Hege,et al.  Localized Finite-time Lyapunov Exponent for Unsteady Flow Analysis , 2009, VMV.

[7]  Holger Theisel,et al.  The State of the Art in Topology‐Based Visualization of Unsteady Flow , 2011, Comput. Graph. Forum.

[8]  Yun Jang,et al.  Smart Transparency for Illustrative Visualization of Complex Flow Surfaces , 2013, IEEE Transactions on Visualization and Computer Graphics.

[9]  Filip Sadlo,et al.  Time-Dependent Visualization of Lagrangian Coherent Structures by Grid Advection , 2011, Topological Methods in Data Analysis and Visualization.

[10]  H.-C. Hege,et al.  Interactive visualization of 3D-vector fields using illuminated stream lines , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[11]  G. Haller,et al.  Lagrangian coherent structures and mixing in two-dimensional turbulence , 2000 .

[12]  Lambertus Hesselink,et al.  Representation and display of vector field topology in fluid flow data sets , 1989, Computer.

[13]  Filip Sadlo Lyapunov Time for 2D Lagrangian Visualization , 2015, Topological and Statistical Methods for Complex Data, Tackling Large-Scale, High-Dimensional, and Multivariate Data Spaces.

[14]  Jeff P. Hultquist,et al.  Constructing stream surfaces in steady 3D vector fields , 1992, Proceedings Visualization '92.

[15]  Gerik Scheuermann,et al.  Detection and Visualization of Closed Streamlines in Planar Flows , 2001, IEEE Trans. Vis. Comput. Graph..

[16]  Hans Hagen,et al.  A Survey of Topology‐based Methods in Visualization , 2016, Comput. Graph. Forum.

[17]  Hans Hagen,et al.  Visualization of Coherent Structures in Transient 2D Flows , 2009, Topology-Based Methods in Visualization II.

[18]  Al Globus,et al.  A tool for visualizing the topology of three-dimensional vector fields , 1991, Proceeding Visualization '91.

[19]  Robert S. Laramee,et al.  The State of the Art , 2015 .

[20]  G. Haller Distinguished material surfaces and coherent structures in three-dimensional fluid flows , 2001 .

[21]  G. Haller Lagrangian coherent structures from approximate velocity data , 2002 .

[22]  Robert van Liere,et al.  Collapsing flow topology using area metrics , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[23]  Gerik Scheuermann,et al.  Computation of Localized Flow for Steady and Unsteady Vector Fields and Its Applications , 2007, IEEE Transactions on Visualization and Computer Graphics.

[24]  Hans Hagen,et al.  IRIS: Illustrative Rendering for Integral Surfaces , 2010, IEEE Transactions on Visualization and Computer Graphics.

[25]  Holger Theisel,et al.  Finite‐Time Mass Separation for Comparative Visualizations of Inertial Particles , 2015, Comput. Graph. Forum.

[26]  Filip Sadlo,et al.  Efficient Visualization of Lagrangian Coherent Structures by Filtered AMR Ridge Extraction , 2007, IEEE Transactions on Visualization and Computer Graphics.

[27]  Lambertus Hesselink,et al.  Visualizing vector field topology in fluid flows , 1991, IEEE Computer Graphics and Applications.

[28]  Axel Brandenburg,et al.  Decay of helical and nonhelical magnetic knots. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Hans Hagen,et al.  Efficient Computation and Visualization of Coherent Structures in Fluid Flow Applications , 2007, IEEE Transactions on Visualization and Computer Graphics.

[30]  Valerio Pascucci,et al.  Extracting Features from Time‐Dependent Vector Fields Using Internal Reference Frames , 2014, Comput. Graph. Forum.

[31]  Hans-Peter Seidel,et al.  Saddle connectors - an approach to visualizing the topological skeleton of complex 3D vector fields , 2003, IEEE Visualization, 2003. VIS 2003..

[32]  Christoph Garth Visualization of complex three-dimensional flow structures , 2007 .

[33]  George Haller,et al.  Experimental and numerical investigation of the kinematic theory of unsteady separation , 2008, Journal of Fluid Mechanics.

[34]  Christian Rössl,et al.  Opacity Optimization for Surfaces , 2014, Comput. Graph. Forum.

[35]  Holger Theisel,et al.  Filtering of FTLE for Visualizing Spatial Separation in Unsteady 3D Flow , 2012 .

[36]  Robert van Liere,et al.  Visualization of Global Flow Structures Using Multiple Levels of Topology , 1999, VisSym.

[37]  Sikun Li,et al.  From numerics to combinatorics: a survey of topological methods for vector field visualization , 2016, J. Vis..

[38]  Holger Theisel Designing 2D Vector Fields of Arbitrary Topology , 2002, Comput. Graph. Forum.

[39]  Hans-Peter Seidel,et al.  Feature Flow Fields , 2003, VisSym.

[40]  Suresh K. Lodha,et al.  Topology Preserving Top-Down Compression of 2D Vector Fields Using Bintree and Triangular Quadtrees , 2003, IEEE Trans. Vis. Comput. Graph..

[41]  Jerrold E. Marsden,et al.  The correlation between surface drifters and coherent structures based on high-frequency radar data in Monterey Bay , 2009 .

[42]  Hans-Peter Seidel,et al.  Topological Construction and Visualization of Higher Order 3D Vector Fields , 2004, Comput. Graph. Forum.

[43]  Holger Theisel,et al.  MCFTLE: Monte Carlo Rendering of Finite‐Time Lyapunov Exponent Fields , 2016, Comput. Graph. Forum.

[44]  Louis Bavoil,et al.  Fourier opacity mapping , 2010, I3D '10.

[45]  Hans Hagen,et al.  Continuous topology simplification of planar vector fields , 2001, Proceedings Visualization, 2001. VIS '01..

[46]  Daniel Weiskopf,et al.  Time‐Dependent 2‐D Vector Field Topology: An Approach Inspired by Lagrangian Coherent Structures , 2010, Comput. Graph. Forum.

[47]  Christian Rössl,et al.  Compression of 2D Vector Fields Under Guaranteed Topology Preservation , 2003, Comput. Graph. Forum.

[48]  Christian Rössl,et al.  Finite Time Steady 2D Vector Field Topology , 2015 .

[49]  Kamran Mohseni,et al.  A ridge tracking algorithm and error estimate for efficient computation of Lagrangian coherent structures. , 2010, Chaos.

[50]  Rüdiger Westermann,et al.  Topology-Preserving Smoothing of Vector Fields , 2001, IEEE Trans. Vis. Comput. Graph..

[51]  Bernd Hamann,et al.  Improving Topological Segmentation of Three-dimensional Vector Fields , 2003, VisSym.

[52]  Thomas Ertl,et al.  A Time-Dependent Vector Field Topology Based on Streak Surfaces , 2013, IEEE Transactions on Visualization and Computer Graphics.

[53]  Hans-Peter Seidel,et al.  Boundary switch connectors for topological visualization of complex 3D vector fields , 2004, VISSYM'04.

[54]  George Haller,et al.  Pollution release tied to invariant manifolds: A case study for the coast of Florida , 2005 .

[55]  Gerik Scheuermann,et al.  Visualizing Nonlinear Vector Field Topology , 1998, IEEE Trans. Vis. Comput. Graph..