Microbial iron transport.

Iron, an essential nutrient, is not readily available in aquatic or terrestrial environments or in animal hosts. Therefore, microbes have developed various strategies for acquiring iron while at the same time protecting themselves from iron's potential toxic effects. The major strategies used by bacteria and fungi to acquire iron include production and utilization of siderophores (ferric specific chelators); utilization of host iron compounds such as heme, transferrin, and lactoferrin; and reduction of Fe(III) to Fe(II) with subsequent transport of Fe(II). Selected examples are discussed with attention to which strategies work best in which environments. The similarities and differences among the different systems with respect to iron binding compounds, receptors, and regulation are also presented.

[1]  P. Bernard,et al.  The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake , 1994, Cell.

[2]  R. Ankenbauer,et al.  FptA, the Fe(III)-pyochelin receptor of Pseudomonas aeruginosa: a phenolate siderophore receptor homologous to hydroxamate siderophore receptors , 1994, Journal of bacteriology.

[3]  Lisa M. Graziano,et al.  INDUCTION OF SPECIFIC PROTEINS IN EUKARYOTIC ALGAE GROWN UNDER IRON‐, PHOSPHORUS‐, OR NITROGEN‐DEFICIENT CONDITIONS 1 , 1993 .

[4]  H. Nikaido Transport across the bacterial outer membrane , 1993, Journal of bioenergetics and biomembranes.

[5]  K. Postle TonB protein and energy transduction between membranes , 1993, Journal of bioenergetics and biomembranes.

[6]  L. Sherman,et al.  The Highly Abundant Chlorophyll-Protein Complex of Iron-Deficient Synechococcus sp. PCC7942 (CP43[prime]) Is Encoded by the isiA Gene , 1993, Plant physiology.

[7]  J. Guest,et al.  Activation of FNR-dependent transcription by iron: an in vitro switch for FNR. , 1993, FEMS microbiology letters.

[8]  P. Weisbeek,et al.  Identification and characterization of a siderophore regulatory gene (pfrA) of Pseudomonas putida WCS358: homology to the alginate regulatory gene aigQ of Pseudomonas aeruginosa , 1993 .

[9]  R. Haselkorn,et al.  Growth of the cyanobacterium Anabaena on molecular nitrogen: NifJ is required when iron is limited. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[10]  D. Heinrichs,et al.  Cloning and sequence analysis of a gene (pchR) encoding an AraC family activator of pyochelin and ferripyochelin receptor synthesis in Pseudomonas aeruginosa , 1993, Journal of bacteriology.

[11]  Jeffrey Green,et al.  A role for iron in transcriptional activation by FNR , 1993, FEBS letters.

[12]  A. Butler,et al.  Aerobactin production by a planktonic marine Vibrio sp , 1993 .

[13]  R. Perry Acquisition and storage of inorganic iron and hemin by the yersiniae. , 1993, Trends in microbiology.

[14]  D. Hutchins,et al.  Interaction of iron and major nutrients controls phytoplankton growth and species composition in the tropical North Pacific Ocean , 1993 .

[15]  P. Weisbeek,et al.  Identification and characterization of the pupB gene encoding an inducible ferric‐pseudobactin receptor of Pseudomonas putida WCS358 , 1993, Molecular microbiology.

[16]  K. Hantke,et al.  Escherichia coli K-12 ferrous iron uptake mutants are impaired in their ability to colonize the mouse intestine. , 1993, FEMS microbiology letters.

[17]  S. Payne,et al.  Cloning and characterization of the Vibrio cholerae genes encoding the utilization of iron from haemin and haemoglobin , 1993, Molecular microbiology.

[18]  S. Calderwood,et al.  Cloning and genetic analysis of the Vibrio vulnificus fur gene and construction of a fur mutant by in vivo marker exchange , 1993, Journal of bacteriology.

[19]  P. Weisbeek,et al.  Iron‐dependent stability of the ferredoxin I transcripts from the cyanobacterial strains Synechococcus species PCC 7942 and Anabaena species PCC 7937 , 1993, Molecular microbiology.

[20]  V. Braun,et al.  The TonB‐dependent ferrichrome receptor FcuA of Yersinia enterocolitica: evidence against a strict co‐evolution of receptor structure and substrate specificity , 1993, Molecular microbiology.

[21]  D. Klessig,et al.  Salicylic acid and plant disease resistance , 1992 .

[22]  K.,et al.  Gonococcal transferrin-binding protein 1 is required for transferrin utilization and is homologous to TonB-dependent outer membrane receptors , 1992, Journal of bacteriology.

[23]  P. Visca,et al.  Metal regulation of siderophore synthesis in Pseudomonas aeruginosa and functional effects of siderophore-metal complexes , 1992, Applied and environmental microbiology.

[24]  V. Braun,et al.  Membrane topology of the Escherichia coli ExbD protein , 1992, Journal of bacteriology.

[25]  R. Ankenbauer,et al.  Cloning of the outer membrane high-affinity Fe(III)-pyochelin receptor of Pseudomonas aeruginosa , 1992, Journal of bacteriology.

[26]  S. Calderwood,et al.  Cloning, sequencing, and transcriptional regulation of viuA, the gene encoding the ferric vibriobactin receptor of Vibrio cholerae , 1992, Journal of bacteriology.

[27]  A. Hinnebusch,et al.  Ferric reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake, and transcriptional control by iron. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[28]  S. Silver,et al.  Gene regulation of plasmid- and chromosome-determined inorganic ion transport in bacteria. , 1992, Microbiological reviews.

[29]  I. Raskin Role of Salicylic Acid in Plants , 1992 .

[30]  K. Postle,et al.  Analysis of Escherichia coli TonB membrane topology by use of PhoA fusions , 1991, Journal of bacteriology.

[31]  J. Tommassen,et al.  The ferric‐pseudobactin receptor PupA of Pseudomonas putida WCS358: homology to TonB‐dependent Escherichia coli receptors and specificity of the protein , 1991, Molecular microbiology.

[32]  K. Schmidt,et al.  Polypeptides p40, pOM2, and pAngR are required for iron uptake and for virulence of the marine fish pathogen Vibrio anguillarum 775 , 1991, Journal of bacteriology.

[33]  G. Winkelmann CRC handbook of microbial iron chelates , 1991 .

[34]  V. Braun,et al.  Novel two-component transmembrane transcription control: regulation of iron dicitrate transport in Escherichia coli K-12 , 1990, Journal of bacteriology.

[35]  S. Fitzwater,et al.  Iron in Antarctic waters , 1990, Nature.

[36]  J. H. Crosa Genetics and molecular biology of siderophore-mediated iron transport in bacteria. , 1989, Microbiological reviews.

[37]  J. H. Crosa,et al.  Regulation of the iron uptake system in Vibrio anguillarum: evidence for a cooperative effect between two transcriptional activators. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[38]  B. Babior,et al.  The respiratory burst oxidase , 1994, Basic life sciences.

[39]  D. Woods,et al.  Effect of pyochelin on Pseudomonas cepacia respiratory infections. , 1988, Microbial pathogenesis.

[40]  B. Babior The respiratory burst oxidase. , 1988, Hematology/oncology clinics of North America.

[41]  J. H. Crosa,et al.  Chromosome-mediated iron uptake system in pathogenic strains of Vibrio anguillarum , 1988, Journal of bacteriology.

[42]  J. Mekalanos,et al.  Confirmation of the Fur operator site by insertion of a synthetic oligonucleotide into an operon fusion plasmid , 1988, Journal of bacteriology.

[43]  W. Verstraete,et al.  Ecological Significance of Siderophores in Soil , 1988 .

[44]  J. Neilands,et al.  Universal chemical assay for the detection and determination of siderophores. , 1987, Analytical biochemistry.

[45]  P. Lambert,et al.  Evidence that mucoid Pseudomonas aeruginosa in the cystic fibrosis lung grows under iron-restricted conditions , 1984 .

[46]  H. Akers Isolation of the Siderophore Schizokinen from Soil of Rice Fields , 1983, Applied and environmental microbiology.

[47]  S. Payne,et al.  Effect of iron limitation on growth, siderophore production, and expression of outer membrane proteins of Vibrio cholerae , 1982, Journal of bacteriology.