Non-relativistic Free–Free Emission due to the n-distribution of Electrons—Radiative Cooling and Thermally Averaged and Total Gaunt Factors

Tracking the thermal evolution of plasmas, characterized by an n-distribution, using numerical simulations, requires the determination of the emission spectra and of the radiative losses due to free–free emission from the corresponding temperature-averaged and total Gaunt factors. Detailed calculations of the latter are presented and associated with n-distributed electrons with the parameter n ranging from 1 (corresponding to the Maxwell–Boltzmann distribution) to 100. The temperature-averaged and total Gaunt factors with decreasing n tend toward those obtained with the Maxwell–Boltzmann distribution. Radiative losses due to free–free emission in a plasma evolving under collisional ionization equilibrium conditions and composed by H, He, C, N, O, Ne, Mg, Si, S, and Fe ions, are presented. These losses decrease with a decrease in the parameter n, reaching a minimum when n = 1, and thus converge with the loss of thermal plasma. Tables of the thermal-averaged and total Gaunt factors calculated for n-distributions, and a wide range of electron and photon energies, are presented.

[1]  D. Breitschwerdt,et al.  Temperature-averaged and total free-free Gaunt factors for $\kappa$ and Maxwellian distributions of electrons , 2015, 1505.05608.

[2]  M. Donahue,et al.  The bow shock, cold fronts and disintegrating cool core in the merging galaxy group RX J0751.3+5012 , 2014, 1407.5791.

[3]  J. Dudík,et al.  The ionization equilibrium and flare line spectra for the electron distribution with a power-law tail , 2011 .

[4]  N. Badnell,et al.  Dielectronic recombination of argon-like ions , 2010, 1003.5161.

[5]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[6]  Peter R. Young,et al.  CHIANTI - an atomic database for emission lines. IX. Ionization rates, recombination rates, ionization equilibria for the elements hydrogen through zinc and updated atomic data , 2009 .

[7]  K. Dere Ionization rate coefficients for the elements hydrogen through zinc , 2007 .

[8]  N. Badnell Dielectronic Recombination of Fe 3pq Ions: A Key Ingredient for Describing X-Ray Absorption in Active Galactic Nuclei , 2006, astro-ph/0608339.

[9]  N. Badnell Radiative Recombination Data for Modeling Dynamic Finite-Density Plasmas , 2006, astro-ph/0604144.

[10]  N. Badnell Dielectronic recombination data for dynamic finite-density plasmas - X : The hydrogen isoelectronic sequence , 2006 .

[11]  N. Badnell,et al.  Dielectronic recombination data for dynamic finite-density plasmas. IX. The fluorine isoelectronic sequence , 2006 .

[12]  N. Badnell,et al.  Erratum: Dielectronic recombination data for dynamic finite-density plasmas IV. The carbon isoelectronic sequence (Astronomy and Astrophysics (2004) 417 (1173-1181) 10.1051/0004-6361:20034174) , 2005 .

[13]  N. Badnell,et al.  Dielectronic Recombination Data for Dynamic Finite-Density Plasmas.. VII; The Fluorine Isoelectronic Sequence, Astronomy and Astrophysics , 2005 .

[14]  N. Badnell,et al.  Dielectronic recombination data for dynamic finite-density plasmas VI. The boron isoelectronic sequence , 2004 .

[15]  N. Badnell,et al.  Dielectronic recombination data for dynamic finite-density plasmas. V: The lithium isoelectronic sequence , 2004 .

[16]  N. Badnell,et al.  Dielectronic recombination data for dynamic finite-density plasmas VIII. The nitrogen isoelectronic sequence , 2004, 1801.10057.

[17]  N. Badnell,et al.  Dielectronic recombination data for dynamic finite-density plasmas. XIII. The magnesium isoelectronic sequence , 2003 .

[18]  N. Badnell,et al.  Dielectronic Recombination Data for Dynamic Finite-Density Plasmas. 2; The Oxygen Isoelectronic Sequence , 2003 .

[19]  M. Arnaud,et al.  Impacts of a power-law non-thermal electron tail on the ionization and recombination rates , 2001, astro-ph/0105376.

[20]  M. Mori,et al.  The double-exponential transformation in numerical analysis , 2001 .

[21]  D. Ellison,et al.  A Simple Model of Nonlinear Diffusive Shock Acceleration , 1999 .

[22]  Ralph S. Sutherland,et al.  Accurate free–free Gaunt factors for astrophysical plasmas , 1998 .

[23]  P. Mazzotta,et al.  Ionization Balance for Optically Thin Plasmas: Rate Coefficients for all Atoms and Ions of the Elements H to Ni and implication for the calculated X-ray spectrum , 1998, astro-ph/9806391.

[24]  E. Dzifčáková The Ionization Equilibrium in the Solar Corona for the Electron Power Distribution , 1998 .

[25]  S. Nozawa,et al.  Relativistic Thermal Bremsstrahlung Gaunt Factor for the Intracluster Plasma , 1998, astro-ph/9906467.

[26]  U. Fantz,et al.  Spectroscopic diagnostics of glow discharge plasmas with non-Maxwellian electron energy distributions , 1994 .

[27]  Pradhan,et al.  Unified treatment of electron-ion recombination in the close-coupling approximation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[28]  C. Janicki A computer program for the free-free and bound-free Gaunt factors of Rydberg systems , 1990 .

[29]  David G. Hummer,et al.  A fast and accurate method for evaluating the nonrelativistic free-free Gaunt factor for hydrogenic ions , 1988 .

[30]  U. Feldman,et al.  Observation of nonthermal energy distributions during the impulsive phase of solar flares , 1987 .

[31]  N. Itoh,et al.  Relativistic free-free opacity for a high-temperature stellar plasma , 1985 .

[32]  C. Sarazin,et al.  Recombination coefficients for iron ions , 1981 .

[33]  J. Kilkenny,et al.  Measurement of fast-electron energy spectra and preheating in laser-irradiated targets , 1979 .

[34]  Masatake Mori,et al.  Double Exponential Formulas for Numerical Integration , 1973 .

[35]  B. Armstrong Gauss-Laguerre calculation of free-free Gaunt factors , 1971 .

[36]  V. Vasyliūnas Low energy electrons in the magnetosphere as observed by OGO-1 and OGO-3 , 1969 .

[37]  A. Burgess A General Formula for the Estimation of Dielectronic Recombination Co-Efficients in Low-Density Plasmas. , 1965 .

[38]  D. T. Farley TWO-STREAM PLASMA INSTABILITY AS A SOURCE OF IRREGULARITIES IN THE IONOSPHERE , 1963 .

[39]  O. Buneman,et al.  EXCITATION OF FIELD ALIGNED SOUND WAVES BY ELECTRON STREAMS , 1963 .

[40]  R. Latter,et al.  Electron Radiative Transitions in a Coulomb Field , 1961 .

[41]  H. Kramers,et al.  XCIII. On the theory of X-ray absorption and of the continuous X-ray spectrum , 1923 .

[42]  M. Karlický,et al.  On the physical meaning of n-distributions in solar flares , 2012 .

[43]  N. Badnell,et al.  Dielectronic recombination data for dynamic finite-density plasmas : XIV. The aluminium isoelectronic sequence , 2012 .

[44]  S. Nozawa,et al.  Relativistic Thermal Bremsstrahlung Gaunt Factor for the Intracluster Plasma. II. Analytic Fitting Formulae , 2000 .

[45]  David R. Kincaid,et al.  Numerical mathematics and computing , 1980 .