Exploring planets and asteroids with 6DoF sensors: Utopia and realism

A 6 degrees-of-freedom (6DoF) sensor, measuring three components of translational acceleration and three components of rotation rate, provides the full history of motion it is exposed to. In Earth sciences 6DoF sensors have shown great potential in exploring the interior of our planet and its seismic sources. In space sciences, apart from navigation, 6DoF sensors are, up to now, only rarely used to answer scientific questions. As a first step of establishing 6DoF motion sensing deeper into space sciences, this article describes novel scientific approaches based on 6DoF motion sensing with substantial potential for constraining the interior structure of planetary objects and asteroids. Therefore we estimate 6DoF-signal levels that originate from lander–surface interactions during landing and touchdown, from a body’s rotational dynamics as well as from seismic ground motions. We discuss these signals for an exemplary set of target bodies including Dimorphos, Phobos, Europa, the Earth’s Moon and Mars and compare those to self-noise levels of state-of-the-art sensors.

[1]  Raphaël F. Garcia,et al.  Probing the internal structure of the asteriod Didymoon with a passive seismic investigation , 2017 .

[2]  Heiner Igel,et al.  Estimate of Rayleigh‐to‐Love wave ratio in the secondary microseism by colocated ring laser and seismograph , 2015 .

[3]  David Mimoun,et al.  Single-station and single-event marsquake location and inversion for structure using synthetic Martian waveforms , 2016 .

[4]  Heiner Igel,et al.  Rotational sensors—a comparison of different sensor types , 2012, Journal of Seismology.

[5]  Huafeng Liu,et al.  SEIS: Insight’s Seismic Experiment for Internal Structure of Mars , 2019, Space Science Reviews.

[6]  Yosio Nakamura,et al.  The shallow elastic structure of the lunar crust: New insights from seismic wavefield gradient analysis , 2016 .

[7]  Alyssa Rhoden,et al.  Tidal disruption of Phobos as the cause of surface fractures , 2016 .

[8]  G. Sagnac L'ether lumineux demontre par l'effet du vent relatif d'ether dans un interferometre en rotation uniforme , 1913 .

[9]  C. Frohlich,et al.  The physical mechanisms of deep moonquakes and intermediate-depth earthquakes: How similar and how different? , 2009 .

[10]  P. Michel,et al.  Thermal fatigue as the origin of regolith on small asteroids , 2014, Nature.

[11]  Raphaël F. Garcia,et al.  Lunar Seismology: A Data and Instrumentation Review , 2020, Space Science Reviews.

[12]  Michael Lange,et al.  MASCOT—The Mobile Asteroid Surface Scout Onboard the Hayabusa2 Mission , 2017 .

[13]  Sean C. Solomon,et al.  Localized gravity/topography admittance and correlation spectra on Mars: Implications for regional and global evolution , 2002 .

[14]  A. Tielens,et al.  Energy dissipation in head-on collisions of spheres , 2013 .

[15]  Nicholas C. Makris,et al.  Probing Europa's interior with natural sound sources , 2003 .

[16]  Sami W. Asmar,et al.  The Rotation and Interior Structure Experiment on the InSight Mission to Mars , 2018, Space Science Reviews.

[17]  Heiner Igel,et al.  Examining ambient noise using colocated measurements of rotational and translational motion , 2012, Journal of Seismology.

[18]  W. Hubbard,et al.  Gravitational signature of Jupiter's internal dynamics , 2009 .

[19]  M. Mellon,et al.  Science potential from a Europa lander. , 2013, Astrobiology.

[20]  J. Wassermann,et al.  Single-station seismic microzonation using 6C measurements , 2020, Journal of Seismology.

[21]  Michael Küppers,et al.  The Hera mission: European component of the ESA-NASA AIDA mission to a binary asteroid , 2018 .

[22]  T. Tanimoto,et al.  Existence of the threshold pressure for seismic excitation by atmospheric disturbances , 2016 .

[23]  F. Press,et al.  Moonquakes , 1971, Science.

[24]  P. Bolstad,et al.  An evaluation of DEM accuracy: elevation, slope, and aspect , 1994 .

[25]  S. Kedar,et al.  The seismicity of Mars , 2020, Nature Geoscience.

[26]  Christoph Sens-Schönfelder,et al.  Lunar noise correlation, imaging and monitoring , 2010 .

[27]  K. Raju,et al.  Fiber Optic Gyroscope , 2004 .

[28]  D. Banfield,et al.  Pressure Effects on the SEIS‐InSight Instrument, Improvement of Seismic Records, and Characterization of Long Period Atmospheric Waves From Ground Displacements , 2020, Journal of Geophysical Research: Planets.

[29]  David R. Lammlein,et al.  Lunar seismicity and tectonics , 1977 .

[30]  R. Lorenz,et al.  Expected Seismicity and the Seismic Noise Environment of Europa , 2017, 1705.03424.

[31]  Erhard Wielandt,et al.  Seismic Sensors and their Calibration , 2009 .

[32]  Yasuhiro Kawakatsu,et al.  Martian Moons Exploration (MMX) Conceptual Study Results , 2017 .

[33]  William M. Folkner,et al.  An improved JPL Mars gravity field and orientation from Mars orbiter and lander tracking data , 2016 .

[34]  Yosio Nakamura,et al.  Lunar seismicity, structure, and tectonics , 1974, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[35]  C. Russell,et al.  Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data , 2020, Nature Geoscience.

[36]  Gordon G. Sorrells,et al.  A Preliminary Investigation into the Relationship between Long-Period Seismic Noise and Local Fluctuations in the Atmospheric Pressure Field , 2010 .

[37]  N. Rambaux,et al.  The Moon’s physical librations and determination of their free modes , 2011 .

[38]  Andreas Fichtner,et al.  Reducing nonuniqueness in finite source inversion using rotational ground motions , 2014 .

[39]  A. Trinh,et al.  On the librations and tides of large icy satellites , 2013 .

[40]  Stefanie Donner,et al.  Six Degree-of-Freedom Broadband Ground-Motion Observations with Portable Sensors: Validation, Local Earthquakes, and Signal Processing , 2020 .

[41]  A. Kunze Lunar crustal density profile from an analysis of doppler gravity data , 1975 .

[42]  Yosio Nakamura,et al.  New identification of deep moonquakes in the Apollo lunar seismic data , 2003 .

[43]  F. Scholten,et al.  The landing(s) of Philae and inferences about comet surface mechanical properties , 2015, Science.

[44]  Yosio Nakamura,et al.  Apollo Lunar Seismic Experiment - Final Summary , 1982 .

[45]  Daoyuan Sun,et al.  Lunar Seismology: An Update on Interior Structure Models , 2019, Space Science Reviews.

[46]  M. Wieczorek,et al.  Density and porosity of the lunar crust from gravity and topography , 2012 .

[47]  M. Nolan,et al.  Digital terrain mapping by the OSIRIS-REx mission , 2020 .

[48]  Heiner Igel,et al.  BlueSeis3A: Full Characterization of a 3C Broadband Rotational Seismometer , 2018 .

[49]  P. Michel,et al.  Asteroid Impact & Deflection Assessment mission: Kinetic impactor , 2016 .

[50]  F. Hourdin,et al.  Influence of the seasonal winds and the CO2 mass exchange between atmosphere and polar caps on Mars' rotation , 2002 .

[51]  Stefanie Donner,et al.  Advances in 6C seismology: Applications of combined translational and rotational motion measurements in global and exploration seismology , 2018 .

[52]  Reinoud Sleeman,et al.  A PDF Representation of the STS‐2 Self‐Noise Obtained from One Year of Data Recorded in the Conrad Observatory, Austria , 2012 .

[53]  Derek C. Richardson,et al.  Dynamical and Physical Properties of 65803 Didymos, the Proposed AIDA Mission Target , 2016 .

[54]  Heiner Igel,et al.  Dynamic Tilt Correction Using Direct Rotational Motion Measurements , 2020 .

[55]  R. Lorenz,et al.  Vital Signs: Seismology of Icy Ocean Worlds. , 2018, Astrobiology.

[56]  Y. Gourinat,et al.  An experimental study of low-velocity impacts into granular material in reduced gravity , 2016, 1702.05980.

[57]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[58]  L. M. Baker,et al.  Transient stresses at Parkfield, California, produced by the M 7.4 Landers earthquake of June 28, 1992: Observations from the UPSAR dense seismograph array , 1995 .

[59]  B. Shiro,et al.  Six‐Axis Ground Motion Measurements of Caldera Collapse at Kīlauea Volcano, Hawai'i—More Data, More Puzzles? , 2020, Geophysical Research Letters.

[60]  T. Nissen‐Meyer,et al.  Seismic Wave Propagation in Icy Ocean Worlds , 2017, 1705.03500.

[61]  Jeroen Tromp,et al.  Initial results from the InSight mission on Mars , 2020, Nature Geoscience.

[62]  Stefanie Donner,et al.  Improved finite-source inversion through joint measurements of rotational and translational ground motions: a numerical study , 2016 .

[63]  P. Rosenblatt,et al.  Signature of Phobos’ interior structure in its gravity field and libration , 2019, Icarus.

[64]  P. Umbanhowar,et al.  Scaling and dynamics of sphere and disk impact into granular media. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[65]  J. Margot,et al.  NEAR-EARTH ASTEROID SATELLITE SPINS UNDER SPIN–ORBIT COUPLING , 2014, 1410.0082.

[66]  B. Romanowicz,et al.  Long-period seismology on Europa: 2. Predicted seismic response , 2006 .

[67]  H. Igel,et al.  Inversion for seismic moment tensors combining translational and rotational ground motions , 2016 .

[68]  Stewart Greenhalgh,et al.  6-C polarization analysis using point measurements of translational and rotational ground-motion: theory and applications , 2018 .

[69]  Wayne C. Crawford,et al.  Identifying and Removing Tilt Noise from Low-Frequency (! 0.1 Hz) Seafloor Vertical Seismic Data , 2000 .

[70]  W. Banerdt,et al.  Verifying single-station seismic approaches using Earth-based data: Preparation for data return from the InSight mission to Mars , 2015 .

[71]  F. Press,et al.  The apollo passive seismic experiment. , 1969, Science.

[72]  D. R. Lammlein Lunar seismicity, structure, and tectonics , 1977, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[73]  Yosio Nakamura,et al.  Farside deep moonquakes and deep interior of the Moon , 2005 .

[74]  Jürgen Oberst,et al.  Phobos control point network, rotation, and shape , 2010 .

[75]  Ogawa Yasuo,et al.  「Earth,Planets and Space」のオープンアクセス出版 , 2016 .

[76]  Hendrik Broer,et al.  Encyclopedia of Complexity and Systems Science , 2009 .

[77]  J. Oberst,et al.  A search for clustering among the meteoroid impacts detected by the Apollo lunar seismic network , 1991 .

[78]  Jens Biele,et al.  Rosetta Lander - Landing and operations on comet 67P/Churyumov-Gerasimenko , 2016 .

[79]  N. Goulty,et al.  The influence of tidal stresses on deep moonquake activity. , 1988 .

[80]  P. Bormann,et al.  Seismic Signals and Noise , 2013 .

[81]  Heiner Igel,et al.  Toward a Single‐Station Approach for Microzonation: Using Vertical Rotation Rate to Estimate Love‐Wave Dispersion Curves and Direction Finding , 2016 .

[82]  Mark A. Zumberge,et al.  Performance of an Optical Seismometer from 1 μHz to 10 Hz , 2014 .