Application of multiple-length-scale methods to the study of optical fiber transmission

It is natural to apply multiple-length-scale methods to the study of optical-fiber transmission because the key length scales span 13 orders of magnitude and cluster in three main groups. At the lowest scale, corresponding to micrometers, the full set of Maxwell's equations should be used. At the intermediate scale, corresponding to the range from one centimeter to tens of meters, the coupled nonlinear Schrödinger equation should be used. Finally, at the longest length scale, corresponding to the range from tens to thousands of kilometers, the Manakov-PMD equation should be used, and, when polarization mode dispersion can be neglected and the fiber gain and loss can be averaged out, one arrives at the scalar nonlinear Schrödinger equation. As an illustrative example of multiple-scale-length techniques, the nonlinear Schrödinger equation will be derived, carefully taking into account the actual length scales that are important in optical-fiber transmission.

[1]  Curtis R. Menyuk,et al.  Polarization evolution and dispersion in fibers with spatially varying birefringence , 1994 .

[2]  C R Menyuk,et al.  Raman effect in birefringent optical fibers. , 1991, Optics letters.

[3]  Anisotropic diffusion of the state of polarization in optical fibers with randomly varying birefringence. , 1995, Optics letters.

[4]  J. Nagel,et al.  Chapter 6 – Polarization Effects in Lightwave Systems , 1997 .

[5]  Hermann A. Haus,et al.  Solitons in optical communications , 1996 .

[6]  A. Maruta,et al.  Chirped nonlinear pulse propagation in a dispersion-compensated system. , 1997, Optics letters.

[7]  D. Marcuse,et al.  Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence , 1997 .

[8]  A. Chraplyvy Limitations on lightwave communications imposed by optical-fiber nonlinearities , 1990 .

[9]  H. Poincaré,et al.  Les méthodes nouvelles de la mécanique céleste , 1899 .

[10]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[11]  Linn F. Mollenauer,et al.  Long-distance soliton propagation using lumped amplifiers and dispersion shifted fiber , 1991 .

[12]  Sergei K. Turitsyn,et al.  Theory of average pulse propagation in high-bit-rate optical transmission systems with strong dispersion management , 1997 .

[13]  Henri Poincaré,et al.  méthodes nouvelles de la mécanique céleste , 1892 .

[14]  N. Doran,et al.  Average soliton dynamics and the operation of soliton systems with lumped amplifiers , 1991, IEEE Photonics Technology Letters.

[15]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[16]  M. Levenson The principles of nonlinear optics , 1985, IEEE Journal of Quantum Electronics.

[17]  Yuji Kodama,et al.  Optical solitons in a monomode fiber , 1985 .

[18]  Akira Hasegawa,et al.  Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion , 1973 .

[19]  Curtis R. Menyuk,et al.  Pulse propagation in an elliptically birefringent Kerr medium , 1989 .

[20]  Yuji Kodama,et al.  Solitons in optical communications , 1995 .

[21]  J Nathan Kutz,et al.  Modulational stability of plane waves in nonreturn-to-zero communications systems with dispersion management. , 1996, Optics letters.

[22]  Hermann A. Haus,et al.  Raman response function of silica-core fibers , 1989, Annual Meeting Optical Society of America.

[23]  C R Menyuk,et al.  Polarization decorrelation in optical fibers with randomly varying birefringence. , 1994, Optics letters.

[24]  C. Menyuk,et al.  Repolarization of polarization-scrambled optical signals due to polarization dependent loss , 1997, IEEE Photonics Technology Letters.

[25]  F. Wallace FIBER OPTICS. , 1965, Hospital topics.

[26]  P. Wai,et al.  Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence , 1996 .

[27]  M. Katzman,et al.  Optical communication systems , 1985, Proceedings of the IEEE.

[28]  R. W. Hellwarth,et al.  Third-order optical susceptibilities of liquids and solids , 1977 .

[29]  C. Poole Statistical treatment of polarization dispersion in single-mode fiber. , 1988, Optics letters.

[30]  Nick Doran,et al.  Optical Communication Systems , 1984 .