Counting the atoms in a 28Si crystal for a new kilogram definition

This paper concerns an international research project aimed at determining the Avogadro constant by counting the atoms in an isotopically enriched silicon crystal. The counting procedure was based on the measurement of the molar volume and the volume of an atom in two 1 kg crystal spheres. The novelty was the use of isotope dilution mass spectrometry as a new and very accurate method for the determination of the molar mass of enriched silicon. Because of an unexpected metallic contamination of the sphere surfaces, the relative measurement uncertainty, 3 × 10−8 NA, is larger by a factor 1.5 than that targeted. The measured value of the Avogadro constant, NA = 6.022 140 82(18) × 1023 mol−1, is the most accurate input datum for the kilogram redefinition and differs by 16 × 10−8 NA from the CODATA 2006 adjusted value. This value is midway between the NIST and NPL watt-balance values.

[1]  Detlef Schiel,et al.  Molar mass of silicon highly enriched in 28Si determined by IDMS , 2011 .

[2]  Yasushi Azuma,et al.  Surface layer determination for the Si spheres of the Avogadro project , 2011 .

[3]  Giovanni Mana,et al.  Measurement of the lattice parameter of a silicon crystal , 2009 .

[4]  Bryan Kibble,et al.  An initial measurement of Planck's constant using the NPL Mark II watt balance , 2007 .

[5]  Ruimin Liu,et al.  Uncertainty Improvements of the NIST Electronic Kilogram , 2007, IEEE Transactions on Instrumentation and Measurement.

[6]  Michael Krystek,et al.  Volume determination of the Avogadro spheres of highly enriched 28Si with a spherical Fizeau interferometer , 2011 .

[7]  Giovanni Mana,et al.  The lattice parameter of the 28Si spheres in the determination of the Avogadro constant , 2011 .

[8]  Peter J. Mohr,et al.  CODATA Recommended Values of the Fundamental Constants: 1998 , 2000 .

[9]  Yasushi Azuma,et al.  Critical review of the current status of thickness measurements for ultrathin SiO2 on Si Part V: Results of a CCQM pilot study , 2004 .

[10]  Horst Bettin,et al.  Solid density determination by the pressure-of-flotation method , 2006 .

[11]  Michael Borys,et al.  State-of-the-art mass determination of 28Si spheres for the Avogadro project , 2011 .

[12]  Giovanni Mana,et al.  Measurement of the {2 2 0} lattice-plane spacing of a 28Si x-ray interferometer , 2010, 1010.3088.

[13]  Hans-Ulrich Danzebrink,et al.  Oxide layer mass determination at the silicon sphere of the Avogadro Project , 2008, 2008 Conference on Precision Electromagnetic Measurements Digest.

[14]  Kenichi Fujii,et al.  Density Comparison of Isotopically Purified Silicon Single Crystals by the Pressure-of-Flotation Method , 2011, IEEE Transactions on Instrumentation and Measurement.

[15]  U. Bonse,et al.  AN X‐RAY INTERFEROMETER , 1965 .

[16]  H. Riemann,et al.  Simultaneous subsecond hyperpolarization of the nuclear and electron spins of phosphorus in silicon by optical pumping of exciton transitions. , 2009, Physical review letters.

[17]  Kenichi Fujii,et al.  Phase corrections in the optical interferometer for Si sphere volume measurements at NMIJ , 2011 .

[18]  Naoki Kuramoto,et al.  Diameter Comparison of a Silicon Sphere for the International Avogadro Coordination Project , 2010, IEEE Transactions on Instrumentation and Measurement.

[19]  M. Borys,et al.  Redefinition of the kilogram and the impact on its future dissemination , 2010 .

[20]  B. P. Kibble,et al.  A Measurement of the Gyromagnetic Ratio of the Proton by the Strong Field Method , 1976 .

[21]  N. Kuramoto,et al.  Volume Determination of Silicon Spheres using an Improved Interferometer with Optical Frequency Tuning , 2004, 2004 Conference on Precision Electromagnetic Measurements.

[22]  Frank Scholze,et al.  A quarter‐century of metrology using synchrotron radiation by PTB in Berlin , 2009 .

[23]  D. Schiel,et al.  Novel Concept for the Mass Spectrometric Determination of Absolute Isotopic Abundances with Improved Measurement Uncertainty: Part 3 - Molar Mass of Silicon Highly Enriched in 28Si , 2011 .

[24]  G. Zosi A neo-pythagorean approach towards an atomic-mass standard , 1983 .

[25]  S Mizushima,et al.  Determination of the amount of gas adsorption on SiO2/Si(100) surfaces to realize precise mass measurement , 2004 .

[26]  Gabrielle Walker A Most Unbearable Weight , 2004, Science.

[27]  K. Fujii,et al.  Density comparison measurements of silicon crystals by a pressure-of-flotation method at NMIJ , 2004 .

[28]  I. L. Barnes,et al.  Determination of the Avogadro Constant , 1974 .

[29]  Blaise Jeanneret,et al.  Determination of the Planck constant with the METAS watt balance , 2011 .

[30]  P. De Bièvre,et al.  Large-scale production of highly enriched 28Si for the precise determination of the Avogadro constant , 2006 .

[31]  Naoki Kuramoto,et al.  Density Determination of Silicon Spheres Using an Interferometer With Optical Frequency Tuning , 2007, IEEE Transactions on Instrumentation and Measurement.

[32]  D. Schiel,et al.  Infrared spectrometric measurement of impurities in highly enriched ‘Si28’ , 2011 .

[33]  P. Becker,et al.  History and progress in the accurate determination of the Avogadro constant , 2001 .

[34]  G. Mana,et al.  Si lattice parameter measurement by centimeter X-ray interferometry. , 2008, Optics express.

[35]  Naoki Kuramoto,et al.  Interferometric determination of the diameter of a silicon sphere using a direct optical frequency tuning system , 2003, IEEE Trans. Instrum. Meas..

[36]  Naoki Kuramoto,et al.  Improvement in the volume determination for Si spheres with an optical interferometer , 2008, 2008 Conference on Precision Electromagnetic Measurements Digest.

[37]  Edwin R. Williams,et al.  Towards an electronic kilogram: an improved measurement of the Planck constant and electron mass , 2005 .

[38]  P. Becker,et al.  Silicon lattice parameters as an absolute scale of length for high precision measurements of fundamental constants , 1990 .

[39]  B. Taylor,et al.  CODATA recommended values of the fundamental physical constants: 2006 | NIST , 2007, 0801.0028.

[40]  Peter J. Mohr,et al.  Redefinition of the kilogram, ampere, kelvin and mole: a proposed approach to implementing CIPM recommendation 1 (CI-2005) , 2006 .

[41]  Kenichi Fujii,et al.  Volume measurements of 28Si spheres using an interferometer with a flat etalon to determine the Avogadro constant , 2011 .

[42]  D. Schiel,et al.  Novel concept for the mass spectrometric determination of absolute isotopic abundances with improved measurement uncertainty: Part 1 – theoretical derivation and feasibility study , 2010 .

[43]  S. Standard GUIDE TO THE EXPRESSION OF UNCERTAINTY IN MEASUREMENT , 2006 .

[44]  D. Pritchard,et al.  World Year of Physics: A direct test of E=mc2 , 2005, Nature.