Quasi-Baer Rings with Essential Prime Radicals

A ring R is called “quasi-Baer” if the right annihilator of every right ideal is generated, as a right ideal, by an idempotent. It can be seen that a quasi-Baer ring cannot be a right essential extension of a nilpotent right ideal. Birkenmeier asked: Does there exist a quasi-Baer ring which is a right essential extension of its prime radical? We answer this question in the affirmative. Moreover, we provide an example of a quasi-Baer ring in which the right essentiality of the prime radical does not imply the left essentiality of the prime radical.