Time-dependent density functional theory study of charge transfer in collisions

We study the charge transfer between colliding ions, atoms, or molecules, within time-dependent density functional theory. Two particular cases are presented, the collision between a proton and a Helium atom, and between a gold atom and a butane molecule. In the first case, proton kinetic energies between 16 keV and 1.2 MeV are considered, with impact parameters between 0.31 and 1.9 Å. The partial transfer of charge is monitored with time. The total cross-section is obtained as a function of the proton kinetic energy. In the second case, we analyze one trajectory and discuss spin-dependent charge transfer between the different fragments.

[1]  P. Bertrand,et al.  Sample metallization for performance improvement in desorption/ionization of kilodalton molecules: quantitative evaluation, imaging secondary ion MS, and laser ablation. , 2003, Analytical chemistry.

[2]  E. Gross,et al.  Density-Functional Theory for Time-Dependent Systems , 1984 .

[3]  J. Wang,et al.  A theoretical model for electron transfer in ion–atom collisions: Calculations for the collision of a proton with an argon atom , 2011 .

[4]  Feng Wang,et al.  Coordinate space translation technique for simulation of electronic process in the ion-atom collision. , 2011, The Journal of chemical physics.

[5]  Richard M. Martin Electronic Structure: Frontmatter , 2004 .

[6]  A. Delcorte,et al.  Molecular dynamics study of metal‐organic samples bombarded by kiloelectronvolt projectiles , 2011 .

[7]  M. Unverzagt,et al.  Intra-atomic Electron-Electron Scattering in p-He Collisions (Thomas Process) Investigated by Cold Target Recoil Ion Momentum Spectroscopy , 1997 .

[8]  E. Gross,et al.  Fundamentals of time-dependent density functional theory , 2012 .

[9]  J. M. Pruneda,et al.  Heating electrons with ion irradiation: A first-principles approach , 2009 .

[10]  M. Head‐Gordon,et al.  Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange , 2003 .

[11]  D. Belkić A quantum theory of ionisation in fast collisions between ions and atomic systems , 1978 .

[12]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .

[13]  Xavier Andrade,et al.  Modified Ehrenfest Formalism for Efficient Large-Scale ab initio Molecular Dynamics. , 2008, Journal of chemical theory and computation.

[14]  Ghosh,et al.  Density-functional theory for time-dependent systems. , 1987, Physical review. A, General physics.

[15]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[16]  E. Gross,et al.  Time-dependent density functional theory. , 2004, Annual review of physical chemistry.

[17]  Kieron Burke,et al.  Basics of TDDFT , 2006 .

[18]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[19]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[20]  H. Appel,et al.  octopus: a tool for the application of time‐dependent density functional theory , 2006 .

[21]  P. Bertrand,et al.  Mechanisms of metal‐assisted secondary ion mass spectrometry: a mixed theoretical and experimental study , 2010 .

[22]  C. F. Barnett,et al.  Charge Exchange Cross Sections of Hydrogen Particles in Gases at High Energies , 1958 .

[23]  C. A. Ratcliffe,et al.  Cross sections for ionization of gases by 5-4000-keV protons and for electron capture by 5-150-keV protons , 1983 .

[24]  J. W. Gallagher,et al.  Electron Production in Proton Collisions: Total Cross Sections , 1985 .

[25]  S. Kaplan,et al.  Cross Sections for Electron Capture by Fast Protons in H-2, He, N-2, and Ar , 1967 .

[26]  T. Kirchner,et al.  Time-dependent independent-particle model calculation of multiple capture and ionization processes in p-Ar, (p)over-bar- Ar, and He2+-Ar collisions , 2002 .

[27]  Angel Rubio,et al.  Propagators for the time-dependent Kohn-Sham equations. , 2004, The Journal of chemical physics.

[28]  H. Lüthi,et al.  Assessment of time-dependent density-functional theory for the calculation of critical features in the absorption spectra of a series of aromatic donor–acceptor systems , 2002 .

[29]  J. Wang,et al.  Comparison of three methods for calculation of electron transfer probability in H+ + Ne , 2012 .

[30]  Emilio Artacho,et al.  Electronic stopping power in LiF from first principles. , 2007, Physical review letters.

[31]  A. Salin,et al.  Electron capture in high-energy ion-atom collisions , 1979 .

[32]  Cross sections for electron capture by protons , 1968 .

[33]  Á. Rubio,et al.  octopus: a first-principles tool for excited electron-ion dynamics. , 2003 .

[34]  M. Head‐Gordon,et al.  Failure of time-dependent density functional theory for long-range charge-transfer excited states: the zincbacteriochlorin-bacteriochlorin and bacteriochlorophyll-spheroidene complexes. , 2004, Journal of the American Chemical Society.

[35]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[36]  J. Williams MEASUREMENT OF CHARGE-TRANSFER CROSS SECTIONS FOR 0.25- TO 2.5-MeV PROTONS AND HYDROGEN ATOMS INCIDENT UPON HYDROGEN AND HELIUM GASES. , 1967 .

[37]  E. Engel,et al.  Density Functional Theory , 2011 .

[38]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[39]  Chérif F. Matta,et al.  How dependent are molecular and atomic properties on the electronic structure method? Comparison of Hartree‐Fock, DFT, and MP2 on a biologically relevant set of molecules , 2009, J. Comput. Chem..

[40]  Wim Vanroose,et al.  Complete Photo-Induced Breakup of the H2 Molecule as a Probe of Molecular Electron Correlation , 2005, Science.

[41]  M. Keim,et al.  Time-dependent density functional theory calculations for collisions of bare ions with helium , 2005 .

[42]  J. Tully Molecular dynamics with electronic transitions , 1990 .

[43]  X. Andrade,et al.  Efficient formalism for large-scale ab initio molecular dynamics based on time-dependent density functional theory. , 2007, Physical review letters.

[44]  R. Schmidt,et al.  Non-adiabatic quantum molecular dynamics: basic formalism and case study , 1996 .

[45]  F. Nogueira,et al.  A primer in density functional theory , 2003 .

[46]  C. F. Barnett,et al.  CHARGE EXCHANGE CROSS SECTIONS OF HYDROGEN IONS IN GASES , 1956 .

[47]  C. Isborn,et al.  Time-dependent density functional theory Ehrenfest dynamics: collisions between atomic oxygen and graphite clusters. , 2007, The Journal of chemical physics.

[48]  S. Koonin,et al.  Time-dependent Hartree-Fock theory of charge exchange: Application to He2+ + He , 1982 .

[49]  J. Meister,et al.  PRINCIPAL COMPONENTS OF IONICITY , 1994 .