Two-Dimensional Tensor Networks and Contraction Algorithms

In this section, we will first demonstrate in Sect. 3.1 that many important physical problems can be transformed to 2D TNs, and the central tasks become to compute the corresponding TN contractions. From Sects. 3.2 to 3.5, we will then present several paradigm contraction algorithms of 2D TNs including TRG, TEBD, and CTMRG. Relations to other distinguished algorithms and the exactly contractible TNs will also be discussed.

[1]  I. McCulloch Infinite size density matrix renormalization group, revisited , 2008, 0804.2509.

[2]  Linearized tensor renormalization group algorithm for the calculation of thermodynamic properties of quantum lattice models. , 2010, Physical review letters.

[3]  Glen Evenbly,et al.  Improving the efficiency of variational tensor network algorithms , 2014 .

[4]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[5]  Z. Y. Xie,et al.  Second renormalization of tensor-network states. , 2008, Physical review letters.

[6]  Michael Levin,et al.  Tensor renormalization group approach to two-dimensional classical lattice models. , 2006, Physical review letters.

[7]  J I Cirac,et al.  Matrix product states for dynamical simulation of infinite chains. , 2009, Physical review letters.

[8]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[9]  Kramers-Wannier Approximation for the 3D Ising Model , 1999, cond-mat/9909097.

[10]  P. Calabrese,et al.  Relaxation after quantum quenches in the spin-1/2 Heisenberg XXZ chain , 2013, 1311.5216.

[11]  D Porras,et al.  Density matrix renormalization group and periodic boundary conditions: a quantum information perspective. , 2004, Physical review letters.

[12]  M. Inoue,et al.  The ST-Transformation Approach to Analytic Solutions of Quantum Systems. I : General Formulations and Basic Limit Theorems , 1987 .

[13]  R. Baxter Variational approximations for square lattice models in statistical mechanics , 1978 .

[14]  E. Demler,et al.  Relaxation of antiferromagnetic order in spin-1/2 chains following a quantum quench. , 2008, Physical review letters.

[15]  P. Dirac Note on Exchange Phenomena in the Thomas Atom , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.

[16]  R. Baxter Corner transfer matrices of the eight-vertex model. II. The Ising model case , 1977 .

[17]  Yasuhiro Hieida,et al.  Two-Dimensional Tensor Product Variational Formulation , 2001 .

[18]  T. Xiang,et al.  TRANSFER-MATRIX DENSITY-MATRIX RENORMALIZATION-GROUP THEORY FOR THERMODYNAMICS OF ONE-DIMENSIONAL QUANTUM SYSTEMS , 1997 .

[19]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[20]  T. Horiguchi,et al.  Phase Diagrams of Spin-3/2 Ising Model on a Square Lattice in Terms of Corner Transfer Matrix Renormalization Group Method , 1998 .

[21]  Tomotoshi Nishino,et al.  A Density Matrix Algorithm for 3D Classical Models , 1998 .

[22]  Frank Verstraete,et al.  Faster identification of optimal contraction sequences for tensor networks. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  G. Takács,et al.  Correlations after quantum quenches in the XXZ spin chain: failure of the generalized Gibbs ensemble. , 2014, Physical review letters.

[24]  Marcin Płodzień,et al.  Many-body Anderson localization in one-dimensional systems , 2012, 1207.2001.

[25]  Frank Pollmann,et al.  Entanglement spectra of critical and near-critical systems in one dimension , 2009, 0910.0051.

[26]  R. Baxter Corner transfer matrices of the eight-vertex model. I. Low-temperature expansions and conjectured properties , 1976 .

[27]  F. Verstraete,et al.  Time-dependent variational principle for quantum lattices. , 2011, Physical review letters.

[28]  R. Baxter CHIRAL POTTS MODEL: CORNER TRANSFER MATRICES AND PARAMETRIZATIONS , 1993 .

[29]  Joel E Moore,et al.  Unbounded growth of entanglement in models of many-body localization. , 2012, Physical review letters.

[30]  Frank Pollmann,et al.  Theory of finite-entanglement scaling at one-dimensional quantum critical points. , 2008, Physical review letters.

[31]  F. Verstraete,et al.  Edge theories in projected entangled pair state models. , 2013, Physical review letters.

[32]  G. Vidal,et al.  Infinite time-evolving block decimation algorithm beyond unitary evolution , 2008 .

[33]  J. Cirac,et al.  Topological order in the projected entangled-pair states formalism: transfer operator and boundary Hamiltonians. , 2013, Physical review letters.

[34]  M. Hastings,et al.  Connecting entanglement in time and space: Improving the folding algorithm , 2014, 1411.7950.

[35]  Roman Jackiw,et al.  Time-dependent variational principle and the effective action , 1979 .

[36]  T. Nishino,et al.  Corner Transfer Matrix Renormalization Group Method , 1995, cond-mat/9507087.

[37]  Roman Orus,et al.  Simulation of two-dimensional quantum systems on an infinite lattice revisited: Corner transfer matrix for tensor contraction , 2009, 0905.3225.

[38]  U. Schollwoeck The density-matrix renormalization group , 2004, cond-mat/0409292.

[39]  G. Evenbly,et al.  Tensor Network Renormalization Yields the Multiscale Entanglement Renormalization Ansatz. , 2015, Physical review letters.

[40]  Frank Verstraete,et al.  Matrix product state representations , 2006, Quantum Inf. Comput..

[41]  R. Baxter Eight-Vertex Model in Lattice Statistics , 1971 .

[42]  M. Bañuls,et al.  Tensor network techniques for the computation of dynamical observables in one-dimensional quantum spin systems , 2012, 1204.5080.

[43]  E. Demler,et al.  Quantum quenches in the anisotropic spin- Heisenberg chain: different approaches to many-body dynamics far from equilibrium , 2009, 0911.1927.

[44]  M. Lewenstein,et al.  Characterizing the quantum field theory vacuum using temporal Matrix Product states , 2018, 1810.08050.

[45]  Tomotoshi Nishino,et al.  Corner Transfer Matrix Algorithm for Classical Renormalization Group , 1997 .

[46]  Y Hieida,et al.  Universal asymptotic eigenvalue distribution of density matrices and corner transfer matrices in the thermodynamic limit. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[47]  R. Baxter,et al.  Dimers on a Rectangular Lattice , 1968 .

[48]  Density Matrix Renormalization Group Method for 2D Classical Models , 1995, cond-mat/9508111.

[49]  J. Ignacio Cirac,et al.  Entanglement spectrum and boundary theories with projected entangled-pair states , 2011, 1103.3427.

[50]  M. Inoue,et al.  The ST-Transformation Approach to Analytic Solutions of Quantum Systems. II: Transfer-Matrix and Pfaffian Methods , 1988 .

[51]  A. Gendiar,et al.  Latent heat calculation of the three-dimensional q=3, 4, and 5 Potts models by the tensor product variational approach. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  K. Wilson The renormalization group: Critical phenomena and the Kondo problem , 1975 .

[53]  Ling Wang,et al.  Plaquette renormalization scheme for tensor network states. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  N. Shibata Thermodynamics of the Anisotropic Heisenberg Chain Calculated by the Density Matrix Renormalization Group Method. , 1997 .

[55]  Z. Y. Xie,et al.  Coarse-graining renormalization by higher-order singular value decomposition , 2012, 1201.1144.

[56]  H. Trotter On the product of semi-groups of operators , 1959 .

[57]  D. Perez-Garcia,et al.  Matrix Product Density Operators: Renormalization Fixed Points and Boundary Theories , 2016, 1606.00608.

[58]  M. Lewenstein,et al.  Criticality in Two-Dimensional Quantum Systems: Tensor Network Approach , 2016, 1609.06852.

[59]  M. Bousquet-Mélou,et al.  Exactly Solved Models , 2009 .

[60]  Frank Pollmann,et al.  Detection of symmetry-protected topological phases in one dimension , 2012, 1204.0704.

[61]  P. W. Langhoff,et al.  Aspects of Time-Dependent Perturbation Theory , 1972 .

[62]  Xiao-Gang Wen,et al.  Tensor-entanglement renormalization group approach as a unified method for symmetry breaking and topological phase transitions , 2008 .

[63]  Pedro Ponte,et al.  Many-body localization in periodically driven systems. , 2014, Physical review letters.

[64]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[65]  G. Evenbly,et al.  Tensor Network Renormalization. , 2014, Physical review letters.

[66]  F. Essler,et al.  Quench dynamics and relaxation in isolated integrable quantum spin chains , 2016, 1603.06452.

[67]  Guifré Vidal Efficient simulation of one-dimensional quantum many-body systems. , 2004, Physical review letters.

[68]  J. I. Latorre,et al.  Scaling of entanglement support for matrix product states , 2007, 0712.1976.

[69]  S. Koonin,et al.  Hamiltonian formulation of time-dependent variational principles for the many-body system , 1976 .

[70]  R. Baxter Corner transfer matrices of the chiral Potts model , 1991 .

[71]  R. Baxter Corner transfer matrices of the chiral Potts model. II. The triangular lattice , 1993 .

[72]  Steven R. White,et al.  Studying Two Dimensional Systems With the Density Matrix Renormalization Group , 2011, 1105.1374.

[73]  Self-consistent tensor product variational approximation for 3D classical models , 2000 .

[74]  T. Xiang,et al.  LETTER TO THE EDITOR: The density matrix renormalization group for a quantum spin chain at non-zero temperature , 1996 .

[75]  Critical exponents of the two-layer Ising model , 2001, cond-mat/0101201.

[76]  P. Forrester,et al.  A variational approximation for cubic lattice models in statistical mechanics , 1984 .

[77]  Sandeep Sharma,et al.  The density matrix renormalization group in quantum chemistry. , 2011, Annual review of physical chemistry.

[78]  J I Cirac,et al.  Classical simulation of infinite-size quantum lattice systems in two spatial dimensions. , 2008, Physical review letters.