暂无分享,去创建一个
Noga Alon | Shay Moran | Ron Holzman | Steve Hanneke | N. Alon | Steve Hanneke | R. Holzman | S. Moran
[1] Gintare Karolina Dziugaite,et al. Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data , 2017, UAI.
[2] Manfred K. Warmuth,et al. Relating Data Compression and Learnability , 2003 .
[3] Matus Telgarsky,et al. Spectrally-normalized margin bounds for neural networks , 2017, NIPS.
[4] Ibrahim M. Alabdulmohsin,et al. What Do Neural Networks Learn When Trained With Random Labels? , 2020, NeurIPS.
[5] Peter E. Hart,et al. Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.
[6] Samy Bengio,et al. Understanding deep learning requires rethinking generalization , 2016, ICLR.
[7] Siddhartha Jain,et al. Unambiguous DNFs and Alon-Saks-Seymour , 2021 .
[8] Vladimir Vovk,et al. Aggregating strategies , 1990, COLT '90.
[9] E. Rowland. Theory of Games and Economic Behavior , 1946, Nature.
[10] Mika Göös,et al. Lower Bounds for Clique vs. Independent Set , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.
[11] Norbert Sauer,et al. On the Density of Families of Sets , 1972, J. Comb. Theory A.
[12] Kaspars Balodis. Several Separations Based on a Partial Boolean Function , 2021, ArXiv.
[13] Ralf Herbrich,et al. Algorithmic Luckiness , 2001, J. Mach. Learn. Res..
[14] Ramon van Handel,et al. The universal Glivenko–Cantelli property , 2010, 1009.4434.
[15] F ROSENBLATT,et al. The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.
[16] Vitaly Feldman,et al. When is memorization of irrelevant training data necessary for high-accuracy learning? , 2020, STOC.
[17] Lee-Ad Gottlieb,et al. Near-Optimal Sample Compression for Nearest Neighbors , 2014, IEEE Transactions on Information Theory.
[18] Thomas G. Dietterich. Adaptive computation and machine learning , 1998 .
[19] Yishay Mansour,et al. Improved generalization bounds for robust learning , 2018, ALT.
[20] Vladimir Vapnik,et al. Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .
[21] O. Bousquet,et al. Predicting Neural Network Accuracy from Weights , 2020, ArXiv.
[22] Shalev Ben-David. Low-Sensitivity Functions from Unambiguous Certificates , 2017, ITCS.
[23] Balas K. Natarajan,et al. On learning sets and functions , 2004, Machine Learning.
[24] Nicholas J. A. Harvey,et al. Near-optimal Sample Complexity Bounds for Robust Learning of Gaussian Mixtures via Compression Schemes , 2017, J. ACM.
[25] J. Zico Kolter,et al. Uniform convergence may be unable to explain generalization in deep learning , 2019, NeurIPS.
[26] Ulrike von Luxburg,et al. Distance-Based Classification with Lipschitz Functions , 2004, J. Mach. Learn. Res..
[27] Manfred K. Warmuth,et al. The Weighted Majority Algorithm , 1994, Inf. Comput..
[28] M. Talagrand. Sharper Bounds for Gaussian and Empirical Processes , 1994 .
[29] Andrew C. Singer,et al. Universal linear prediction by model order weighting , 1999, IEEE Trans. Signal Process..
[30] John Shawe-Taylor,et al. Structural Risk Minimization Over Data-Dependent Hierarchies , 1998, IEEE Trans. Inf. Theory.
[31] Nathan Srebro,et al. Exploring Generalization in Deep Learning , 2017, NIPS.
[32] Cynthia Dwork,et al. Calibrating Noise to Sensitivity in Private Data Analysis , 2006, TCC.
[33] Ioannis Mitliagkas,et al. In Search of Robust Measures of Generalization , 2020, NeurIPS.
[34] Mika Göös,et al. Unambiguous DNFs from Hex , 2021, Electron. Colloquium Comput. Complex..
[35] Shay Moran,et al. Private Learning Implies Online Learning: An Efficient Reduction , 2019, NeurIPS.
[36] Gintare Karolina Dziugaite,et al. On the role of data in PAC-Bayes bounds , 2021, AISTATS.
[37] HausslerDavid,et al. A general lower bound on the number of examples needed for learning , 1989 .
[38] David Haussler,et al. Learnability and the Vapnik-Chervonenkis dimension , 1989, JACM.
[39] Boaz Barak,et al. Deep double descent: where bigger models and more data hurt , 2019, ICLR.
[40] John Shawe-Taylor,et al. PAC-Bayesian Compression Bounds on the Prediction Error of Learning Algorithms for Classification , 2005, Machine Learning.
[41] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[42] David Haussler,et al. How to use expert advice , 1993, STOC.
[43] Manfred K. Warmuth,et al. Averaging Expert Predictions , 1999, EuroCOLT.
[44] Gábor Lugosi,et al. Prediction, learning, and games , 2006 .
[45] Nicolas Bousquet,et al. Clique versus independent set , 2013, Eur. J. Comb..
[46] Aryeh Kontorovich,et al. Sample Compression for Real-Valued Learners , 2018, ALT.
[47] Vitaly Feldman,et al. Does learning require memorization? a short tale about a long tail , 2019, STOC.
[48] Ran El-Yaniv,et al. A compression technique for analyzing disagreement-based active learning , 2014, J. Mach. Learn. Res..
[49] Aryeh Kontorovich,et al. Exact Lower Bounds for the Agnostic Probably-Approximately-Correct (PAC) Machine Learning Model , 2016, The Annals of Statistics.
[50] S. Szarek. Metric Entropy of Homogeneous Spaces , 1997, math/9701213.
[51] Úlfar Erlingsson,et al. RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response , 2014, CCS.
[52] Mikhail Belkin,et al. Reconciling modern machine-learning practice and the classical bias–variance trade-off , 2018, Proceedings of the National Academy of Sciences.
[53] Shay Moran,et al. Sample compression schemes for VC classes , 2015, 2016 Information Theory and Applications Workshop (ITA).
[54] Soumendu Sundar Mukherjee,et al. Weak convergence and empirical processes , 2019 .
[55] Aaron Roth,et al. The Algorithmic Foundations of Differential Privacy , 2014, Found. Trends Theor. Comput. Sci..
[56] Aryeh Kontorovich,et al. Nearest-Neighbor Sample Compression: Efficiency, Consistency, Infinite Dimensions , 2017, NIPS.
[57] Badih Ghazi,et al. Sample-efficient proper PAC learning with approximate differential privacy , 2021, STOC.
[58] Shai Ben-David,et al. Understanding Machine Learning: From Theory to Algorithms , 2014 .
[59] Vladimir Vovk,et al. Universal Forecasting Algorithms , 1992, Inf. Comput..
[60] Jonathan Ullman,et al. Efficient Private Algorithms for Learning Large-Margin Halfspaces , 2020, ALT.
[61] Philip M. Long,et al. Characterizations of Learnability for Classes of {0, ..., n}-Valued Functions , 1995, J. Comput. Syst. Sci..
[62] Manfred K. Warmuth. Compressing to VC Dimension Many Points , 2003, COLT.
[63] Shay Moran,et al. Supervised learning through the lens of compression , 2016, NIPS.
[64] Ruth Urner,et al. Probabilistic Lipschitzness A niceness assumption for deterministic labels , 2013 .
[65] Roi Livni,et al. An Equivalence Between Private Classification and Online Prediction , 2020, 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS).
[66] Steve Hanneke,et al. The Optimal Sample Complexity of PAC Learning , 2015, J. Mach. Learn. Res..
[67] N. Littlestone. Learning Quickly When Irrelevant Attributes Abound: A New Linear-Threshold Algorithm , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).
[68] Sanjoy Dasgupta,et al. Rates of Convergence for Nearest Neighbor Classification , 2014, NIPS.
[69] Claes Johnson,et al. Mathematics and Computation , 2023, Springer Proceedings in Mathematics & Statistics.
[70] Massimiliano Pontil,et al. Empirical Bernstein Bounds and Sample-Variance Penalization , 2009, COLT.
[71] Shai Ben-David,et al. Agnostic Online Learning , 2009, COLT.
[72] Noga Alon,et al. Adversarial laws of large numbers and optimal regret in online classification , 2021, STOC.
[73] Leslie G. Valiant,et al. A general lower bound on the number of examples needed for learning , 1988, COLT '88.
[74] Noga Alon,et al. Private PAC learning implies finite Littlestone dimension , 2018, STOC.