The hot bands of silane between 2120 and 2270 cm-1

Abstract The infrared spectrum of the SiH 4 molecule has been recorded between 2040 and 2320 cm −1 using the high-resolution Fourier interferometer of the Laboratoire de Photophysique Moleculaire ( Orsay , France ). The resolution was 5.4 × 10 −3  cm −1 . In this region, many lines were previously analyzed and assigned to the ν 1 / ν 3 stretching dyad of 28 SiH 4 , 29 SiH 4 , and 30 SiH 4 molecules [J. Mol. Spectrosc. 143 (1990) 35]. However, several lines in the spectrum were not assigned. The results obtained in our previous study [J. Mol. Spectrosc. 197 (1999) 307] of the infrared spectrum of 28 SiH 4 , in the bending-stretching tetrad region at 3100 cm −1 , enabled us to assign 204 of the observed transitions to hot bands (the ν 1  +  ν 2 / ν 1  +  ν 4 / ν 2  +  ν 3 / ν 3  +  ν 4 bending-stretching tetrad minus the ν 2 / ν 4 bending dyad). These transitions were used to refine the set of the Hamiltonian parameters of the bending-stretching tetrad. The analysis is performed using the tensorial formalism developed in Dijon for tetrahedral molecules and implemented in the STDS software ( http://www.u-bourgogne.fr/LPUB/shTDS.html ).

[1]  G. Guelachvili,et al.  High-accuracy Doppler-limited 10(6) samples Fourier transform spectroscopy. , 1978, Applied optics.

[2]  Guy Guelachvili,et al.  Absolute wavenumbers and molecular constants of the fundamental bands of 12C16O, 12C17O, 12C18O, 13C16O, 13C17O, 13C18O and of the 2-1 bands of 12C16O and 13C16O, around 5μm, by Fourier spectroscopy under vacuum , 1979 .

[3]  A. Robiette,et al.  Extended assignment and analysis of the ν2 and ν4 infrared bands of 12CH4 , 1981 .

[4]  G. Pierre,et al.  Microwave Fourier transform spectroscopy of rotational and rovibrational transitions in the ν2ν4 dyad of silane-28Si , 1986 .

[5]  Jean-Paul Champion,et al.  Symmetry-adapted tensorial formalism to model rovibrational and rovibronic spectra of molecules pertaining to various point groups , 2004 .

[6]  J. Champion,et al.  Spherical top data system (STDS) software for the simulation of spherical top spectra , 1998 .

[7]  D. L. Gray,et al.  Vibration-rotation coupling between ν1 and ν3 in SiH4 , 1977 .

[8]  G. Pierre,et al.  The silane isotopomers 29SiH4 and 30SiH4 constants of the ν2/ν4 dyad , 1990 .

[9]  H. Berger,et al.  Observation de transitions de la molécule 29SiH4 dans le spectre Raman stimulé de la bande ν1 du silane en abondance naturelle , 1984 .

[10]  J. Champion,et al.  ANALYSIS OF THE $v_{3}$ AND $v_{1}$ INFRA-RED BANDS OF $GeH_{4}$ , 1978 .

[11]  J. Champion,et al.  Etude des bandes fondamentales en interaction du 28SiH4 à partir de l'Hamiltonien développé au 3e ordre , 1982 .

[12]  J. Champion,et al.  Weighted least squares, polyad analyses, and theoretical consistency: A demonstrative example: The 12CH3F molecule , 1985 .

[13]  R. McDowell,et al.  High-resolution inverse Raman spectroscopy of the ν1 band of 28SiH4☆☆☆ , 1981 .

[14]  J. Champion Développement complet de l'hamiltonien de vibration–rotation adapté à l'étude des interactions dans les molécules toupies sphériques. Application aux bandes ν2 et ν4 de 12CH4 , 1977 .

[15]  G. Pierre,et al.  Le niveau de base du silane obtenu à partir de l'étude du spectre à transformée de Fourier de ν2 et ν4 , 1984 .

[16]  G. Pierre,et al.  The ground-state rotational constants of silane , 1974 .

[17]  R. Kagann,et al.  The distortion moment spectrum of GeH4: the microwave Q branch , 1976 .

[18]  A. Weber,et al.  Spectroscopy of the Earth's Atmosphere and Interstellar Medium , 1992 .

[19]  J. Leblanc THÈSE DE 3ÈME CYCLE , 1978 .

[20]  D. F. Gray,et al.  Simultaneous analysis of the ?2 and ?4 bands of methane , 1976 .

[21]  D. L. Gray,et al.  Measurement of the v 2 infra-red band of silane, and a simultaneous analysis of the v 2 and v 4 bands , 1977 .

[22]  G. Pierre,et al.  Étude par transformée de Fourier, du spectre, du silane dans la région de 1000 cm−1. Analyse de la diade ν2 et ν4 , 1986 .

[23]  A. Bauder,et al.  Pure rotational Q-branch spectrum of silane-28Si in the vibrational ground state observed by microwave Fourier transform spectroscopy , 1986 .

[24]  J. Champion,et al.  Les bandes de différence des molécules tétraédriques. Application : les bandes chaudes 2 ν4 — ν4 et ν 2 + ν4 — ν2 de 12CH 4 , 1980 .

[25]  J. Champion,et al.  Vibration-rotation energies of harmonic and combination levels in tetrahedral XY4 molecules: Theory and extrapolation method , 1980 .

[26]  G. Millot,et al.  Raman Intensities of the v1/v3 Dyad of 28SiH4 , 1995 .

[27]  Valentin,et al.  Analysis of the Infrared Fourier Transform Spectrum of the Spectra of Silane in the Range 2930-3300 cm(-1). , 1999, Journal of molecular spectroscopy.

[28]  G. Pierre,et al.  Analysis of the infrared Fourier transform spectrum of the Dyad of 116SnH4 , 1990 .

[29]  G. Millot,et al.  Study of interacting bands of silane: Analysis of infrared and Raman spectra , 1990 .

[30]  M. Takami Infrared-radiofrequency double resonance in the SiH4 ν3 band using a tunable diode laser , 1982 .

[31]  G. Guelachvili,et al.  Nouvelle détermination des constantes rotationnelles du niveau de base du silane , 1975 .

[32]  L. Brown,et al.  Analysis of the ?2/?4 dyad of 12CH4 and 13CH41 , 1989 .