Pseudomorphic growth and strain relaxation of α-Zn3P2 on GaAs(001) by molecular beam epitaxy

[1]  H. Atwater,et al.  Molecular beam epitaxy of n-type ZnS: A wide band gap emitter for heterojunction PV devices , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.

[2]  S. Demers,et al.  Intrinsic Defects and Dopability of Zinc Phosphide , 2012, 1203.0584.

[3]  N. Lewis,et al.  Photoluminescence-based measurements of the energy gap and diffusion length of Zn3P2 , 2009 .

[4]  K. Baskar,et al.  Influence of cooling rate on the liquid-phase epitaxial growth of Zn3P2 , 2008 .

[5]  K. N. Subramanian Lead-Free Electronic Solders: A Special Issue of the Journal of Materials Science: Materials in Electronics , 2007 .

[6]  Q. Huang,et al.  Transport properties of InAs epilayers grown on GaAs substrates by using the prelayer technique , 2004 .

[7]  C. Surya,et al.  High-mobility GaN epilayer grown by RF plasma-assisted molecular beam epitaxy on intermediate-temperature GaN buffer layer , 2001 .

[8]  M. Bhushan,et al.  Polycrystalline Zn3P2 Schottky barrier solar cells , 1998 .

[9]  K. Sasaki,et al.  N‐type zinc phosphide grown by molecular beam epitaxy , 1996 .

[10]  M. Yamada,et al.  Role of Ga2O in the removal of GaAs surface oxides induced by atomic hydrogen , 1994 .

[11]  C. Rouleau,et al.  GaAs substrate cleaning for epitaxy using a remotely generated atomic hydrogen beam , 1993 .

[12]  M. Yamada,et al.  Effect of Atomic Hydrogen on GaAs (001) Surface Oxide Studied by Temperature-Programmed Desorption , 1992 .

[13]  K. Kakishita,et al.  Epitaxial growth of zinc phosphide , 1992 .

[14]  S. Kalem Transport properties of InAs epilayers grown by molecular beam epitaxy , 1990 .

[15]  Ziqiang Zhu,et al.  MBE growth mechanisms of ZnSe: Flux ratio and substrate temperature , 1989 .

[16]  K. Kuwahara,et al.  Substrate effect on the deposition of Zn3P2 thin films prepared by a hot‐wall method , 1989 .

[17]  K. Kuwahara,et al.  Growth and characterization of zinc phosphide crystals , 1988 .

[18]  V. Muñoz,et al.  Growth and electrical properties of Zn3P2 single crystals and polycrystalline ingots , 1987 .

[19]  K. Kuwahara,et al.  Some properties of Zn3P2 polycrystalline films prepared by hot‐wall deposition , 1986 .

[20]  P. Vaya,et al.  Growth of zinc phosphide thin films by hot wall epitaxy , 1985 .

[21]  J. Pawlikowski Absorption edge of Zn 3 P 2 , 1982 .

[22]  A. Catalano The growth of large Zn3P2 crystals by vapor transport , 1980 .

[23]  E. A. Fagen Optical properties of Zn3P2 , 1979 .

[24]  N. C. Wyeth,et al.  Spectral response measurements of minority‐carrier diffusion length in Zn3P2 , 1979 .

[25]  R. Roberts,et al.  Annual Review of Materials Science , 1972 .

[26]  A. Venkitaraman,et al.  The vaporization of zinc phosphide , 1967 .

[27]  J. W.,et al.  The Journal of Physical Chemistry , 1900, Nature.

[28]  Martín Heidegger Physica A-E , 2013, Phänomenologische Interpretationen zu Aristoteles.

[29]  M. Amann,et al.  Semiconductor Science and Technology , 2011 .

[30]  Matthew J. Rosseinsky,et al.  Physical Review B , 2011 .

[31]  Tanmoy Das,et al.  Superconductivity and topological Fermi surface transitions in electron-doped cuprates near optimal doping , 2007, 0711.1504.

[32]  T. Jones,et al.  Atomic hydrogen cleaning of GaAs(001): a scanning tunnelling microscopy study [rapid communication] , 2004 .

[33]  R. Stradling,et al.  InSb epilayers on GaAs(100) for spintronic and magneto-resistive sensor applications , 2004 .

[34]  R. Jaszek Carrier scattering by dislocations in semiconductors , 2001 .

[35]  A. Fahrenbruch,et al.  Electrical properties of Zn3P2 single crystals , 1982 .

[36]  M. Bhushan Schottky solar cells on thin polycrystalline Zn3P2 films , 1982 .

[37]  K W Mitchell,et al.  Status of New Thin-Film Photovoltaic Technologies , 1982 .

[38]  A. Catalano,et al.  Defect dominated conductivity in Zn3P2 , 1980 .

[39]  J. Misiewicz,et al.  Direct and indirect optical transitions in Zn3P2 , 1979 .

[40]  G. D. Parfitt,et al.  Surface Science , 1965, Nature.