Pseudomorphic growth and strain relaxation of α-Zn3P2 on GaAs(001) by molecular beam epitaxy
暂无分享,去创建一个
N. Lewis | H. Atwater | G. Kimball | J. Bosco
[1] H. Atwater,et al. Molecular beam epitaxy of n-type ZnS: A wide band gap emitter for heterojunction PV devices , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.
[2] S. Demers,et al. Intrinsic Defects and Dopability of Zinc Phosphide , 2012, 1203.0584.
[3] N. Lewis,et al. Photoluminescence-based measurements of the energy gap and diffusion length of Zn3P2 , 2009 .
[4] K. Baskar,et al. Influence of cooling rate on the liquid-phase epitaxial growth of Zn3P2 , 2008 .
[5] K. N. Subramanian. Lead-Free Electronic Solders: A Special Issue of the Journal of Materials Science: Materials in Electronics , 2007 .
[6] Q. Huang,et al. Transport properties of InAs epilayers grown on GaAs substrates by using the prelayer technique , 2004 .
[7] C. Surya,et al. High-mobility GaN epilayer grown by RF plasma-assisted molecular beam epitaxy on intermediate-temperature GaN buffer layer , 2001 .
[8] M. Bhushan,et al. Polycrystalline Zn3P2 Schottky barrier solar cells , 1998 .
[9] K. Sasaki,et al. N‐type zinc phosphide grown by molecular beam epitaxy , 1996 .
[10] M. Yamada,et al. Role of Ga2O in the removal of GaAs surface oxides induced by atomic hydrogen , 1994 .
[11] C. Rouleau,et al. GaAs substrate cleaning for epitaxy using a remotely generated atomic hydrogen beam , 1993 .
[12] M. Yamada,et al. Effect of Atomic Hydrogen on GaAs (001) Surface Oxide Studied by Temperature-Programmed Desorption , 1992 .
[13] K. Kakishita,et al. Epitaxial growth of zinc phosphide , 1992 .
[14] S. Kalem. Transport properties of InAs epilayers grown by molecular beam epitaxy , 1990 .
[15] Ziqiang Zhu,et al. MBE growth mechanisms of ZnSe: Flux ratio and substrate temperature , 1989 .
[16] K. Kuwahara,et al. Substrate effect on the deposition of Zn3P2 thin films prepared by a hot‐wall method , 1989 .
[17] K. Kuwahara,et al. Growth and characterization of zinc phosphide crystals , 1988 .
[18] V. Muñoz,et al. Growth and electrical properties of Zn3P2 single crystals and polycrystalline ingots , 1987 .
[19] K. Kuwahara,et al. Some properties of Zn3P2 polycrystalline films prepared by hot‐wall deposition , 1986 .
[20] P. Vaya,et al. Growth of zinc phosphide thin films by hot wall epitaxy , 1985 .
[21] J. Pawlikowski. Absorption edge of Zn 3 P 2 , 1982 .
[22] A. Catalano. The growth of large Zn3P2 crystals by vapor transport , 1980 .
[23] E. A. Fagen. Optical properties of Zn3P2 , 1979 .
[24] N. C. Wyeth,et al. Spectral response measurements of minority‐carrier diffusion length in Zn3P2 , 1979 .
[25] R. Roberts,et al. Annual Review of Materials Science , 1972 .
[26] A. Venkitaraman,et al. The vaporization of zinc phosphide , 1967 .
[27] J. W.,et al. The Journal of Physical Chemistry , 1900, Nature.
[28] Martín Heidegger. Physica A-E , 2013, Phänomenologische Interpretationen zu Aristoteles.
[29] M. Amann,et al. Semiconductor Science and Technology , 2011 .
[30] Matthew J. Rosseinsky,et al. Physical Review B , 2011 .
[31] Tanmoy Das,et al. Superconductivity and topological Fermi surface transitions in electron-doped cuprates near optimal doping , 2007, 0711.1504.
[32] T. Jones,et al. Atomic hydrogen cleaning of GaAs(001): a scanning tunnelling microscopy study [rapid communication] , 2004 .
[33] R. Stradling,et al. InSb epilayers on GaAs(100) for spintronic and magneto-resistive sensor applications , 2004 .
[34] R. Jaszek. Carrier scattering by dislocations in semiconductors , 2001 .
[35] A. Fahrenbruch,et al. Electrical properties of Zn3P2 single crystals , 1982 .
[36] M. Bhushan. Schottky solar cells on thin polycrystalline Zn3P2 films , 1982 .
[37] K W Mitchell,et al. Status of New Thin-Film Photovoltaic Technologies , 1982 .
[38] A. Catalano,et al. Defect dominated conductivity in Zn3P2 , 1980 .
[39] J. Misiewicz,et al. Direct and indirect optical transitions in Zn3P2 , 1979 .
[40] G. D. Parfitt,et al. Surface Science , 1965, Nature.