Freeprocessing: Transparent in situ Visualization via Data Interception

In situ visualization has become a popular method for avoiding the slowest component of many visualization pipelines: reading data from disk. Most previous in situ work has focused on achieving visualization scalability on par with simulation codes, or on the data movement concerns that become prevalent at extreme scales. In this work, we consider in situ analysis with respect to ease of use and programmability. We describe an abstraction that opens up new applications for in situ visualization, and demonstrate that this abstraction and an expanded set of use cases can be realized without a performance cost.

[1]  Nilanjan Chakraborty,et al.  A posteriori testing of algebraic flame surface density models for LES , 2013 .

[2]  Michael E. Papka,et al.  Toward simulation-time data analysis and I/O acceleration on leadership-class systems , 2011, 2011 IEEE Symposium on Large Data Analysis and Visualization.

[3]  Ray W. Grout,et al.  Ultrascale Visualization In Situ Visualization for Large-Scale Combustion Simulations , 2010 .

[4]  Bruno Coriton,et al.  Large-Eddy Simulation and experiments on non-premixed highly turbulent opposed jet flows , 2011 .

[5]  William J. Schroeder,et al.  Research Challenges for Visualization Software , 2012, Computer.

[6]  Karsten Schwan,et al.  Just in time: adding value to the IO pipelines of high performance applications with JITStaging , 2011, HPDC '11.

[7]  Karsten Schwan,et al.  Flexible IO and integration for scientific codes through the adaptable IO system (ADIOS) , 2008, CLADE '08.

[8]  Andreas Kempf,et al.  Large eddy simulations of the Darmstadt turbulent stratified flame series , 2013 .

[9]  Devin W. Silvia,et al.  ENZO: AN ADAPTIVE MESH REFINEMENT CODE FOR ASTROPHYSICS , 2013, J. Open Source Softw..

[10]  Jeremy S. Meredith,et al.  Parallel in situ coupling of simulation with a fully featured visualization system , 2011, EGPGV '11.

[11]  Karsten Schwan,et al.  DataStager: scalable data staging services for petascale applications , 2009, HPDC '09.

[12]  Charles D. Hansen,et al.  GLuRay: Enhanced Ray Tracing in Existing Scientific Visualization Applications using OpenGL Interception , 2012, EGPGV@Eurographics.

[13]  Scott Klasky,et al.  Examples of in transit visualization , 2011, PDAC '11.

[14]  Scott Klasky,et al.  Enabling high-speed asynchronous data extraction and transfer using DART , 2010, Concurr. Comput. Pract. Exp..

[15]  John Biddiscombe,et al.  Parallel computational steering and analysis for HPC applications using a paraview interface and the HDF5 DSM virtual file driver , 2011, EGPGV '11.

[16]  F. Proch,et al.  Numerical analysis of the Cambridge stratified flame series using artificial thickened flame LES with tabulated premixed flame chemistry , 2014 .

[17]  Bruno Raffin,et al.  A hierarchical component model for large parallel interactive applications , 2012, The Journal of Supercomputing.

[18]  Karsten Schwan,et al.  GoldRush: Resource efficient in situ scientific data analytics using fine-grained interference aware execution , 2013, 2013 SC - International Conference for High Performance Computing, Networking, Storage and Analysis (SC).

[19]  Greg Humphreys,et al.  Chromium: a stream-processing framework for interactive rendering on clusters , 2002, SIGGRAPH.

[20]  Kenneth Moreland,et al.  Sandia National Laboratories , 2000 .

[21]  Robert Sisneros,et al.  Damaris/Viz: A nonintrusive, adaptable and user-friendly in situ visualization framework , 2013, 2013 IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV).

[22]  Hank Childs,et al.  VisIt: An End-User Tool for Visualizing and Analyzing Very Large Data , 2011 .

[23]  D. Weiskopf,et al.  Gpu-based Two-dimensional Flow Simulation Steering Using Coherent Structures , 2022 .

[24]  M. Norman,et al.  yt: A MULTI-CODE ANALYSIS TOOLKIT FOR ASTROPHYSICAL SIMULATION DATA , 2010, 1011.3514.

[25]  Scott Pakin,et al.  Exploring power behaviors and trade-offs of in-situ data analytics , 2013, 2013 SC - International Conference for High Performance Computing, Networking, Storage and Analysis (SC).