New methods for mode-independent robust control of Markov jump linear systems

This paper treats the H 2 and H ∞ controls of linear systems with Markov jump disturbances, via new design methods based on linear matrix inequalities (LMIs). The proposed techniques are especially tailored to the scenario where the jump process cannot be measured, and apply to homogeneous Markov chains of any structure. In the scenario of polytopic uncertainty affecting the system matrices, new uncertainty-dependent methods are introduced for the design of robust controllers. Several numerical examples illustrate situations where the proposed techniques are less conservative than the ones found in the literature.

[1]  Vasile Dragan,et al.  Mathematical Methods in Robust Control of Discrete-Time Linear Stochastic Systems , 2009 .

[2]  V. Dragan,et al.  Mathematical Methods in Robust Control of Linear Stochastic Systems , 2006 .

[3]  Marcelo D. Fragoso,et al.  A Separation Principle for the Continuous-Time LQ-Problem With Markovian Jump Parameters , 2010, IEEE Transactions on Automatic Control.

[4]  Oswaldo Luiz V. Costa,et al.  Stationary filter for linear minimum mean square error estimator of discrete-time Markovian jump systems , 2002, IEEE Trans. Autom. Control..

[5]  Carlos E. de Souza,et al.  Robust stability and stabilization of uncertain discrete-time Markovian jump linear systems , 2006, IEEE Transactions on Automatic Control.

[6]  R. P. Marques,et al.  Mixed H2/H∞-control of discrete-time Markovian jump linear systems , 1998, IEEE Trans. Autom. Control..

[7]  Marcelo D. Fragoso,et al.  Stationary filter for continuous-time Markovian jump linear systems , 2005, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[8]  Marcelo D. Fragoso,et al.  On the Filtering Problem for Continuous-Time Markov Jump Linear Systems with no Observation of the Markov Chain , 2011, Eur. J. Control.

[9]  M. Fragoso,et al.  On a partially observable LQG problem for systems with Markovian jumping parameters , 1988 .

[10]  James Lam,et al.  On robust stabilization of Markovian jump systems with uncertain switching probabilities , 2005, Autom..

[11]  Alim P. C. Gonçalves,et al.  H∞ robust and networked control of discrete-time MJLS through LMIs , 2012, J. Frankl. Inst..

[12]  Marcelo D. Fragoso,et al.  A Small Random Perturbation Analysis of a Partially Observable LQG Problem for Systems with Markovian Jumping Parameters , 1990 .

[13]  O. L. V. Costa,et al.  Finite horizon quadratic optimal control and a separation principle for Markovian jump linear systems , 2003, IEEE Trans. Autom. Control..

[14]  Alexandre Trofino,et al.  Mode-Independent ${\cal H}_{\infty}$ Filters for Markovian Jump Linear Systems , 2006, IEEE Transactions on Automatic Control.

[15]  James Lam,et al.  Analysis and Synthesis of Markov Jump Linear Systems With Time-Varying Delays and Partially Known Transition Probabilities , 2008, IEEE Transactions on Automatic Control.

[16]  Alim P. C. Gonçalves,et al.  The H2-control for jump linear systems: cluster observations of the Markov state , 2002, Autom..

[17]  Ricardo C. L. F. Oliveira,et al.  Mode-Independent ${\cal H}_{2}$ -Control of a DC Motor Modeled as a Markov Jump Linear System , 2014, IEEE Transactions on Control Systems Technology.

[18]  J. Geromel,et al.  A new discrete-time robust stability condition , 1999 .

[19]  J. Geromel,et al.  A Convex Programming Approach to the H2-Control of Discrete-Time Markovian Jump Linear Systems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[20]  Alim P. C. Gonçalves,et al.  Optimal and mode-independent filters for generalised Bernoulli jump systems , 2015, Int. J. Syst. Sci..

[21]  Raja Sengupta,et al.  A bounded real lemma for jump systems , 2003, IEEE Trans. Autom. Control..

[22]  L. Ghaoui,et al.  Robust state-feedback stabilization of jump linear systems , 1996 .

[23]  Raja Sengupta,et al.  An H/sub /spl infin// approach to networked control , 2005, IEEE Transactions on Automatic Control.

[24]  Ricardo C. L. F. Oliveira,et al.  Robust stability, ℋ2 analysis and stabilisation of discrete-time Markov jump linear systems with uncertain probability matrix , 2009, Int. J. Control.

[25]  J.C. Geromel,et al.  ${\cal H}_{\infty}$ Filtering of Discrete-Time Markov Jump Linear Systems Through Linear Matrix Inequalities , 2009, IEEE Transactions on Automatic Control.

[26]  Marcelo D. Fragoso,et al.  A separation principle for the H2-control of continuous-time infinite Markov jump linear systems with partial observations , 2007 .

[27]  Alessandro N. Vargas,et al.  On the control of Markov jump linear systems with no mode observation: application to a DC Motor device , 2013 .

[28]  M. Fragoso,et al.  Continuous-Time Markov Jump Linear Systems , 2012 .

[29]  P. Caines,et al.  On the Adaptive Control for Jump Parameter Systems viaNonlinear Filtering , 1995 .

[30]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[31]  M. Fragoso,et al.  Stability Results for Discrete-Time Linear Systems with Markovian Jumping Parameters , 1993 .

[32]  R. Elliott,et al.  Adaptive control of linear systems with Markov perturbations , 1998, IEEE Trans. Autom. Control..

[33]  Alim P. C. Gonçalves,et al.  ℋ 2 filtering of discrete-time Markov jump linear systems through linear matrix inequalities , 2008, Int. J. Control.