Finite element based inversion for time-harmonic electromagnetic problems

SUMMARY In this paper we address the inverse problem and present some recent advances in numerical methods to recover the subsurface electrical conductivity from time-harmonic electromagnetic data. We rigorously formulate and discretize both the forward and the inverse problem in the finite element framework. To solve the forward problem, we derive a finite element discretization of the first-order system of Maxwell’s equations in terms of the electric field and the magnetic induction. We show that our approach is equivalent to the standard discretization of the vector Helmholtz equation in terms of the electric field and that the discretization of magnetic induction of the same approximation order is hidden in the standard discretization. We implement the forward solver on unstructured tetrahedral meshes using edge elements. Unstructured meshes are not only capable of representing complex geometry. They can also reduce the overall problem size and, thus, the size of the system of linear equations arising from the forward problem such that direct methods for its solution using a sparse matrix factorization become feasible. The inverse problem is formulated as a regularized output least squares problem. We considertworegularizationfunctions.First,wederiveasmoothnessregularizerusingaprimal-dual mixedfiniteelementformulationwhichgeneralizesthestandardLaplacianoperatorforapiecewiseconstantconductivitymodelonunstructuredmeshes.Secondly,wederiveatotalvariation regularizer for the same class of models. For the choice of the regularization parameter we revisit the so-called dynamic regularization and compare it to a standard regularization scheme with fixed regularization parameter. The optimization problem is solved by the Gauss–Newton method which can be efficiently implemented using sparse matrix–vector operations and exploiting the sparse matrix factorization of the forward problem system matrix. A synthetic data example from marine controlled source electromagnetics demonstrates the feasibility of our method and shows that both regularization functions and both regularization parameter selection schemes produce a comparable reconstruction of the subsurface conductivity.

[1]  O. Ernst,et al.  Fast 3-D simulation of transient electromagnetic fields by model reduction in the frequency domain using Krylov subspace projection , 2008 .

[2]  Douglas W. Oldenburg,et al.  Inversion of time domain three‐dimensional electromagnetic data , 2007 .

[3]  T. Günther,et al.  Three‐dimensional modelling and inversion of dc resistivity data incorporating topography – II. Inversion , 2006 .

[4]  G. Newman,et al.  Frequency‐domain modelling of airborne electromagnetic responses using staggered finite differences , 1995 .

[5]  Patrick Amestoy,et al.  Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..

[6]  E. Haber,et al.  Inversion of 3D electromagnetic data in frequency and time domain using an inexact all-at-once approach , 2004 .

[7]  Wolfgang Fichtner,et al.  Efficient Sparse LU Factorization with Left-Right Looking Strategy on Shared Memory Multiprocessors , 2000 .

[8]  Michael S. Zhdanov,et al.  Fast numerical modeling of multitransmitter electromagnetic data using multigrid quasi-linear approximation , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[9]  E. Haber,et al.  On optimization techniques for solving nonlinear inverse problems , 2000 .

[10]  Olaf Schenk,et al.  Solving unsymmetric sparse systems of linear equations with PARDISO , 2004, Future Gener. Comput. Syst..

[11]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[12]  Chester J. Weiss,et al.  Adaptive finite-element modeling using unstructured grids: The 2D magnetotelluric example , 2005 .

[13]  J. T. Smith Conservative modeling of 3-D electromagnetic fields, Part I: Properties and error analysis , 1996 .

[14]  Gerald W. Hohmann,et al.  Electromagnetic modeling of three-dimensional bodies in layered earths using integral equations , 1983 .

[15]  Chester J. Weiss,et al.  Mapping thin resistors and hydrocarbons with marine EM methods, Part II -Modeling and analysis in 3D , 2006 .

[16]  Walter L. Anderson,et al.  A hybrid fast Hankel transform algorithm for electromagnetic modeling , 1989 .

[17]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[18]  Uri M. Ascher,et al.  On level set regularization for highly ill-posed distributed parameter estimation problems , 2006, J. Comput. Phys..

[19]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[20]  Zonghou Xiong,et al.  Electromagnetic modeling of 3-D structures by the method of system iteration using integral equations , 1992 .

[21]  Gregory A. Newman,et al.  Three‐dimensional massively parallel electromagnetic inversion—I. Theory , 1997 .

[22]  Daniel A. White,et al.  A Vector Finite Element Time-Domain Method for Solving Maxwell's Equations on Unstructured Hexahedral Grids , 2001, SIAM J. Sci. Comput..

[23]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..

[24]  Rita Streich,et al.  3D finite-difference frequency-domain modeling of controlled-source electromagnetic data: Direct solution and optimization for high accuracy , 2009 .

[25]  Otmar Scherzer,et al.  Inverse Scale Space Theory for Inverse Problems , 2001, Scale-Space.

[26]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[27]  E. Haber,et al.  Adaptive finite volume method for distributed non-smooth parameter identification , 2007 .

[28]  J. T. Smith Conservative modeling of 3-D electromagnetic fields, Part II: Biconjugate gradient solution and an accelerator , 1996 .

[29]  Chester J. Weiss,et al.  Mapping thin resistors and hydrocarbons with marine EM methods: Insights from 1D modeling , 2006 .

[30]  M. Benzi,et al.  A comparative study of sparse approximate inverse preconditioners , 1999 .

[31]  Oszkar Biro,et al.  Finite-element analysis of controlled-source electromagnetic induction using Coulomb-gauged potentials , 2001 .

[32]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[33]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[34]  Michael Commer,et al.  New advances in three‐dimensional controlled‐source electromagnetic inversion , 2007 .

[35]  Klaus Spitzer,et al.  Adaptive unstructured grid finite element simulation of two-dimensional magnetotelluric fields for arbitrary surface and seafloor topography , 2007 .

[36]  Kerry Key,et al.  2D marine controlled-source electromagnetic modeling: Part 1 — An adaptive finite-element algorithm , 2007 .

[37]  Jonathan Richard Shewchuk,et al.  What is a Good Linear Element? Interpolation, Conditioning, and Quality Measures , 2002, IMR.

[38]  William Rodi,et al.  Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion , 2001 .

[39]  Uri M. Ascher,et al.  Fast Finite Volume Simulation of 3D Electromagnetic Problems with Highly Discontinuous Coefficients , 2000, SIAM J. Sci. Comput..

[40]  P. J. Huber Robust Estimation of a Location Parameter , 1964 .

[41]  Jian-Ming Jin,et al.  A spectral Lanczos decomposition method for solving 3-D low-frequency electromagnetic diffusion by the finite-element method , 1999 .

[42]  Juan E. Santos,et al.  Parallel finite element algorithm with domain decomposition for three-dimensional magnetotelluric modelling , 2000 .

[43]  James G. Berryman,et al.  FDFD: a 3D finite-difference frequency-domain code for electromagnetic induction tomography , 2001 .

[44]  Stefan Heldmann,et al.  An octree multigrid method for quasi-static Maxwell's equations with highly discontinuous coefficients , 2007, J. Comput. Phys..

[45]  Myung Jin Nam,et al.  3D magnetotelluric modelling including surface topography , 2007 .

[46]  Tohru Mogi Three-dimensional modeling of magnetotelluric data using finite element method , 1996 .

[47]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[48]  U. Ascher,et al.  Dynamic level set regularization for large distributed parameter estimation problems , 2007 .

[49]  R. Parker Geophysical Inverse Theory , 1994 .

[50]  Jian-Ming Jin,et al.  The Finite Element Method in Electromagnetics , 1993 .

[51]  S. Osher,et al.  Nonlinear inverse scale space methods , 2006 .

[52]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[53]  Christoph Schwarzbach,et al.  Three-dimensional adaptive higher order finite element simulation for geo-electromagnetics—a marine CSEM example , 2011 .

[54]  M. Hanke,et al.  Nonstationary Iterated Tikhonov Regularization , 1998 .

[55]  Paul T. Boggs,et al.  Solution Accelerators For Large-scale 3D Electromagnetic Inverse Problems , 2004 .

[56]  O. Schenk,et al.  ON FAST FACTORIZATION PIVOTING METHODS FOR SPARSE SYMMETRI C INDEFINITE SYSTEMS , 2006 .

[57]  Patrick R. Amestoy,et al.  Multifrontal parallel distributed symmetric and unsymmetric solvers , 2000 .

[58]  Sergei Knizhnik,et al.  3D integral equation modeling with a linear dependence on dimensions , 2009 .

[59]  Toshihiro Uchida,et al.  3D magnetotelluric modeling using the T‐Ω finite‐element method , 2004 .

[60]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[61]  M. Shashkov,et al.  Mimetic Discretizations for Maxwell's Equations , 1999 .

[62]  S. Constable Ten years of marine CSEM for hydrocarbon exploration , 2010 .