Finite element based inversion for time-harmonic electromagnetic problems
暂无分享,去创建一个
[1] O. Ernst,et al. Fast 3-D simulation of transient electromagnetic fields by model reduction in the frequency domain using Krylov subspace projection , 2008 .
[2] Douglas W. Oldenburg,et al. Inversion of time domain three‐dimensional electromagnetic data , 2007 .
[3] T. Günther,et al. Three‐dimensional modelling and inversion of dc resistivity data incorporating topography – II. Inversion , 2006 .
[4] G. Newman,et al. Frequency‐domain modelling of airborne electromagnetic responses using staggered finite differences , 1995 .
[5] Patrick Amestoy,et al. Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..
[6] E. Haber,et al. Inversion of 3D electromagnetic data in frequency and time domain using an inexact all-at-once approach , 2004 .
[7] Wolfgang Fichtner,et al. Efficient Sparse LU Factorization with Left-Right Looking Strategy on Shared Memory Multiprocessors , 2000 .
[8] Michael S. Zhdanov,et al. Fast numerical modeling of multitransmitter electromagnetic data using multigrid quasi-linear approximation , 2006, IEEE Transactions on Geoscience and Remote Sensing.
[9] E. Haber,et al. On optimization techniques for solving nonlinear inverse problems , 2000 .
[10] Olaf Schenk,et al. Solving unsymmetric sparse systems of linear equations with PARDISO , 2004, Future Gener. Comput. Syst..
[11] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[12] Chester J. Weiss,et al. Adaptive finite-element modeling using unstructured grids: The 2D magnetotelluric example , 2005 .
[13] J. T. Smith. Conservative modeling of 3-D electromagnetic fields, Part I: Properties and error analysis , 1996 .
[14] Gerald W. Hohmann,et al. Electromagnetic modeling of three-dimensional bodies in layered earths using integral equations , 1983 .
[15] Chester J. Weiss,et al. Mapping thin resistors and hydrocarbons with marine EM methods, Part II -Modeling and analysis in 3D , 2006 .
[16] Walter L. Anderson,et al. A hybrid fast Hankel transform algorithm for electromagnetic modeling , 1989 .
[17] Richard Barrett,et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.
[18] Uri M. Ascher,et al. On level set regularization for highly ill-posed distributed parameter estimation problems , 2006, J. Comput. Phys..
[19] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[20] Zonghou Xiong,et al. Electromagnetic modeling of 3-D structures by the method of system iteration using integral equations , 1992 .
[21] Gregory A. Newman,et al. Three‐dimensional massively parallel electromagnetic inversion—I. Theory , 1997 .
[22] Daniel A. White,et al. A Vector Finite Element Time-Domain Method for Solving Maxwell's Equations on Unstructured Hexahedral Grids , 2001, SIAM J. Sci. Comput..
[23] Gene H. Golub,et al. A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..
[24] Rita Streich,et al. 3D finite-difference frequency-domain modeling of controlled-source electromagnetic data: Direct solution and optimization for high accuracy , 2009 .
[25] Otmar Scherzer,et al. Inverse Scale Space Theory for Inverse Problems , 2001, Scale-Space.
[26] Patrick Amestoy,et al. A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..
[27] E. Haber,et al. Adaptive finite volume method for distributed non-smooth parameter identification , 2007 .
[28] J. T. Smith. Conservative modeling of 3-D electromagnetic fields, Part II: Biconjugate gradient solution and an accelerator , 1996 .
[29] Chester J. Weiss,et al. Mapping thin resistors and hydrocarbons with marine EM methods: Insights from 1D modeling , 2006 .
[30] M. Benzi,et al. A comparative study of sparse approximate inverse preconditioners , 1999 .
[31] Oszkar Biro,et al. Finite-element analysis of controlled-source electromagnetic induction using Coulomb-gauged potentials , 2001 .
[32] P. Raviart,et al. A mixed finite element method for 2-nd order elliptic problems , 1977 .
[33] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[34] Michael Commer,et al. New advances in three‐dimensional controlled‐source electromagnetic inversion , 2007 .
[35] Klaus Spitzer,et al. Adaptive unstructured grid finite element simulation of two-dimensional magnetotelluric fields for arbitrary surface and seafloor topography , 2007 .
[36] Kerry Key,et al. 2D marine controlled-source electromagnetic modeling: Part 1 — An adaptive finite-element algorithm , 2007 .
[37] Jonathan Richard Shewchuk,et al. What is a Good Linear Element? Interpolation, Conditioning, and Quality Measures , 2002, IMR.
[38] William Rodi,et al. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion , 2001 .
[39] Uri M. Ascher,et al. Fast Finite Volume Simulation of 3D Electromagnetic Problems with Highly Discontinuous Coefficients , 2000, SIAM J. Sci. Comput..
[40] P. J. Huber. Robust Estimation of a Location Parameter , 1964 .
[41] Jian-Ming Jin,et al. A spectral Lanczos decomposition method for solving 3-D low-frequency electromagnetic diffusion by the finite-element method , 1999 .
[42] Juan E. Santos,et al. Parallel finite element algorithm with domain decomposition for three-dimensional magnetotelluric modelling , 2000 .
[43] James G. Berryman,et al. FDFD: a 3D finite-difference frequency-domain code for electromagnetic induction tomography , 2001 .
[44] Stefan Heldmann,et al. An octree multigrid method for quasi-static Maxwell's equations with highly discontinuous coefficients , 2007, J. Comput. Phys..
[45] Myung Jin Nam,et al. 3D magnetotelluric modelling including surface topography , 2007 .
[46] Tohru Mogi. Three-dimensional modeling of magnetotelluric data using finite element method , 1996 .
[47] Allen Taflove,et al. Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .
[48] U. Ascher,et al. Dynamic level set regularization for large distributed parameter estimation problems , 2007 .
[49] R. Parker. Geophysical Inverse Theory , 1994 .
[50] Jian-Ming Jin,et al. The Finite Element Method in Electromagnetics , 1993 .
[51] S. Osher,et al. Nonlinear inverse scale space methods , 2006 .
[52] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[53] Christoph Schwarzbach,et al. Three-dimensional adaptive higher order finite element simulation for geo-electromagnetics—a marine CSEM example , 2011 .
[54] M. Hanke,et al. Nonstationary Iterated Tikhonov Regularization , 1998 .
[55] Paul T. Boggs,et al. Solution Accelerators For Large-scale 3D Electromagnetic Inverse Problems , 2004 .
[56] O. Schenk,et al. ON FAST FACTORIZATION PIVOTING METHODS FOR SPARSE SYMMETRI C INDEFINITE SYSTEMS , 2006 .
[57] Patrick R. Amestoy,et al. Multifrontal parallel distributed symmetric and unsymmetric solvers , 2000 .
[58] Sergei Knizhnik,et al. 3D integral equation modeling with a linear dependence on dimensions , 2009 .
[59] Toshihiro Uchida,et al. 3D magnetotelluric modeling using the T‐Ω finite‐element method , 2004 .
[60] C. Vogel. Computational Methods for Inverse Problems , 1987 .
[61] M. Shashkov,et al. Mimetic Discretizations for Maxwell's Equations , 1999 .
[62] S. Constable. Ten years of marine CSEM for hydrocarbon exploration , 2010 .