Godunov-type schemes with an inertia term for unsteady full Mach number range flow calculations

An inertia term is introduced in the AUSM+-up scheme. The resulting scheme, called AUSM-IT (IT for Inertia Term), is designed as an extension of the AUSM+-up scheme allowing for full Mach number range calculations of unsteady flows including acoustic features. In line with the continuous asymptotic analysis, the AUSM-IT scheme satisfies the conservation of the discrete linear acoustic energy at first order in the low Mach number limit. Its capability to properly handle low Mach number unsteady flows, that may include acoustic waves or discontinuities, is numerically illustrated. The approach for building the AUSM-IT scheme from the AUSM+-up scheme is applicable to any other Godunov-type scheme.

[1]  H. Guillard,et al.  On the behaviour of upwind schemes in the low Mach number limit , 1999 .

[2]  Sankaran,et al.  Improved Flux Formulations for Unsteady Low Mach Number Flows , 2012 .

[3]  Xue-song Li,et al.  Mechanism of Roe-type schemes for all-speed flows and its application , 2013 .

[4]  M. Liou A Sequel to AUSM , 1996 .

[5]  P. Lax Weak solutions of nonlinear hyperbolic equations and their numerical computation , 1954 .

[6]  Meng-Sing Liou,et al.  A sequel to AUSM, Part II: AUSM+-up for all speeds , 2006, J. Comput. Phys..

[7]  Xue-song Li,et al.  An All-Speed Roe-type scheme and its asymptotic analysis of low Mach number behaviour , 2008, J. Comput. Phys..

[8]  Stéphane Dellacherie,et al.  Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number , 2010, J. Comput. Phys..

[9]  Huazhong Tang,et al.  On the sonic point glitch , 2005 .

[10]  Andreas Meister,et al.  Asymptotic Single and Multiple Scale Expansions in the Low Mach Number Limit , 1999, SIAM J. Appl. Math..

[11]  Lawrence L. Takacs,et al.  A Two-Step Scheme for the Advection Equation with Minimized Dissipation and Dispersion Errors , 1985 .

[12]  M. Liou,et al.  A New Flux Splitting Scheme , 1993 .

[13]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[14]  Eiji Shima,et al.  Towards shock-stable and accurate hypersonic heating computations: A new pressure flux for AUSM-family schemes , 2013, J. Comput. Phys..

[15]  A. Majda,et al.  Compressible and incompressible fluids , 1982 .

[16]  Eiji Shima,et al.  Parameter-Free Simple Low-Dissipation AUSM-Family Scheme for All Speeds , 2011 .

[17]  R. Klein Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics , 1995 .

[18]  C. Rhie,et al.  Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation , 1983 .

[19]  Tarik Kousksou,et al.  Pressure-velocity coupling allowing acoustic calculation in low Mach number flow , 2012, J. Comput. Phys..

[20]  Eiji Shima,et al.  On the improvement of the all-speed flux scheme for very low Mach number flows , 2013 .

[21]  H. Guillard,et al.  On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes , 2004 .

[22]  Felix Rieper,et al.  A low-Mach number fix for Roe's approximate Riemann solver , 2011, J. Comput. Phys..

[23]  Erik Dick,et al.  Pressure-velocity coupling for unsteady low Mach number flow simulations: An improvement of the AUSM+-up scheme , 2013, J. Comput. Appl. Math..

[24]  A. Pascau,et al.  Cell face velocity alternatives in a structured colocated grid for the unsteady Navier–Stokes equations , 2011 .