An efficient solver for space-time isogeometric Galerkin methods for parabolic problems

Abstract In this work we focus on the preconditioning of a Galerkin space–time isogeometric discretization of the heat equation. Exploiting the tensor product structure of the basis functions in the parametric domain, we propose a preconditioner that is the sum of Kronecker products of matrices and that can be efficiently applied thanks to an extension of the classical Fast Diagonalization method. The preconditioner is robust w.r.t. the polynomial degree of the spline space and the time required for the application is almost proportional to the number of degrees-of-freedom, for a serial execution. By incorporating some information on the geometry parametrization and on the equation coefficients, we keep high efficiency with non-trivial domains and variable thermal conductivity and heat capacity coefficients.

[1]  Santiago Badia,et al.  Maximum-principle preserving space-time isogeometric analysis , 2018, ArXiv.

[2]  T. Tezduyar,et al.  Space–time computation techniques with continuous representation in time (ST-C) , 2014 .

[3]  Ulrich Langer,et al.  Parallel and Robust Preconditioning for Space-Time Isogeometric Analysis of Parabolic Evolution Problems , 2018, SIAM J. Sci. Comput..

[4]  Rafael Vázquez,et al.  A new design for the implementation of isogeometric analysis in Octave and Matlab: GeoPDEs 3.0 , 2016, Comput. Math. Appl..

[5]  Martin J. Gander,et al.  50 Years of Time Parallel Time Integration , 2015 .

[6]  Giancarlo Sangalli,et al.  Anisotropic NURBS approximation in isogeometric analysis , 2012 .

[7]  Ulrich Langer,et al.  Space–time isogeometric analysis of parabolic evolution problems , 2015, 1509.02008.

[8]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[9]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[10]  John R. Rice,et al.  Direct solution of partial difference equations by tensor product methods , 1964 .

[11]  Giancarlo Sangalli,et al.  Space-time least-squares isogeometric method and efficient solver for parabolic problems , 2018, Math. Comput..

[12]  Martin J. Gander,et al.  Analysis of a New Space-Time Parallel Multigrid Algorithm for Parabolic Problems , 2014, SIAM J. Sci. Comput..

[13]  Yuki Ueda,et al.  Stability and error estimates for the successive-projection technique with B-splines in time , 2019, J. Comput. Appl. Math..

[14]  Giancarlo Sangalli,et al.  Isogeometric Preconditioners Based on Fast Solvers for the Sylvester Equation , 2016, SIAM J. Sci. Comput..

[15]  Hitoshi Hattori,et al.  Turbocharger flow computations with the Space-Time Isogeometric Analysis (ST-IGA) , 2017 .

[16]  Ulrich Langer,et al.  Multipatch Space-Time Isogeometric Analysis of Parabolic Diffusion Problems , 2017, LSSC.

[17]  C. Douglas,et al.  Condition number estimates for matrices arising in NURBS based isogeometric discretizations of elliptic partial differential equations , 2014, 1406.6808.

[18]  Giancarlo Sangalli,et al.  Robust isogeometric preconditioners for the Stokes system based on the Fast Diagonalization method , 2017, Computer Methods in Applied Mechanics and Engineering.

[19]  Einar M. Rønquist,et al.  A fast tensor-product solver for incompressible fluid flow in partially deformed three-dimensional domains: Parallel implementation , 2011 .

[20]  Olaf Steinbach,et al.  Space-Time Finite Element Methods for Parabolic Problems , 2015, Comput. Methods Appl. Math..

[21]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[22]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[23]  P. Fischer,et al.  High-Order Methods for Incompressible Fluid Flow , 2002 .

[24]  Andrea Bressan,et al.  Approximation in FEM, DG and IGA: a theoretical comparison , 2018, Numerische Mathematik.

[25]  John C. Bruch,et al.  Transient two‐dimensional heat conduction problems solved by the finite element method , 1974 .

[26]  Tayfun E. Tezduyar,et al.  Ram-air parachute structural and fluid mechanics computations with the Space-Time Isogeometric Analysis (ST-IGA) , 2016 .

[27]  Carlos Alberto Dorao,et al.  A parallel time-space least-squares spectral element solver for incompressible flow problems , 2007, Appl. Math. Comput..

[28]  Giancarlo Sangalli,et al.  Matrix-free weighted quadrature for a computationally efficient isogeometric k-method , 2017, Computer Methods in Applied Mechanics and Engineering.

[29]  Tayfun E. Tezduyar,et al.  Heart Valve Flow Computation with the Space–Time Slip Interface Topology Change (ST-SI-TC) Method and Isogeometric Analysis (IGA) , 2018 .

[30]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[31]  Thomas J. R. Hughes,et al.  n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .

[32]  Jan Westerdiep,et al.  Stability of Galerkin discretizations of a mixed space–time variational formulation of parabolic evolution equations , 2019, IMA Journal of Numerical Analysis.

[33]  J. Tinsley Oden,et al.  A GENERAL THEORY OF FINITE ELEMENTS II. APPLICATIONS , 1969 .

[34]  Isaac Fried,et al.  Finite-element analysis of time-dependent phenomena. , 1969 .

[35]  Angelos Mantzaflaris,et al.  Low-Rank Space-Time Decoupled Isogeometric Analysis for Parabolic Problems with Varying Coefficients , 2018, Comput. Methods Appl. Math..

[36]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: IX. Fourier analysis of space-time Galerkin/least-squares algorithms , 1991 .