Partitions, diophantine equations, and control systems

Abstract Ordered partitions of elements of a reduced abelian monoid are defined and studied by means of the solutions of linear diophantine equations. Links to feedback classification of linear dynamical systems over certain commutative rings are given in the same way as partitions of integers are related to feedback classification of linear dynamical systems over fields in the classical literature.

[1]  Scott T. Chapman,et al.  ON DELTA SETS OF NUMERICAL MONOIDS , 2006 .

[2]  P. A. Macmahon,et al.  Divisors of Numbers and their Continuations in the Theory of Partitions , 1921 .

[3]  Noemí DeCastro-García,et al.  A characterization of von Neumann rings in terms of linear systems , 2016 .

[4]  Kenneth P. Bogart,et al.  Introductory Combinatorics , 1977 .

[5]  Lee Klingler,et al.  On feedback invariants for linear dynamical systems , 2001 .

[6]  Laurence Emilie Um,et al.  Monomial codes seen as invariant subspaces , 2017 .

[7]  Ion Zaballa,et al.  Hermite indices and state feedback: generic case , 2007 .

[8]  N. Wiener,et al.  Behavior, Purpose and Teleology , 1943, Philosophy of Science.

[9]  Eduardo D. Sontag,et al.  New results on pole-shifting for parametrized families of systems , 1986 .

[10]  R. Kaiman KRONECKER INVARIANTS AND FEEDBACK , 1972 .

[11]  D. S. Kothari,et al.  Statistical mechanics and the partitions of numbers , 1946, Mathematical Proceedings of the Cambridge Philosophical Society.

[12]  W. Ewens The sampling theory of selectively neutral alleles. , 1972, Theoretical population biology.

[13]  Sedat Ilhan,et al.  On the saturated numerical semigroups , 2016 .

[14]  Donald E. Knuth,et al.  The Art of Computer Programming, Volume 4, Fascicle 2: Generating All Tuples and Permutations (Art of Computer Programming) , 2005 .

[15]  Miguel V. Carriegos,et al.  Enumeration of classes of linear systems via equations and via partitions in an ordered abelian monoid , 2013 .

[16]  F. Puerta,et al.  Brunowsky local form of a holomorphic family of pairs of matrices , 1997 .

[17]  Miguel V. Carriegos,et al.  On the K-theory of feedback actions on linear systems , 2013, 1306.1021.

[18]  Pavol Brunovský,et al.  A classification of linear controllable systems , 1970, Kybernetika.

[19]  J. Rosenberg,et al.  Algebraic K-Theory and Its Applications , 1995 .

[20]  Stephan Mertens The Easiest Hard Problem: Number Partitioning , 2006, Computational Complexity and Statistical Physics.

[21]  Miguel V. Carriegos,et al.  Partitions of elements in a monoid and its applications to systems theory , 2015, 1502.00025.

[22]  Miguel V. Carriegos,et al.  On matrix inverses modulo a subspace , 2004 .

[23]  Wiland Schmale,et al.  Feedback classification of linear systems over von Neumann regular rings , 2011, 1103.1018.

[24]  Richard M. Wilson,et al.  A course in combinatorics , 1992 .

[25]  G. Hardy,et al.  Asymptotic Formulaæ in Combinatory Analysis , 1918 .

[26]  Sadek Bouroubi,et al.  Enumeration of the Partitions of an Integer into Parts of a Specified Number of Different Sizes and Especially Two Sizes , 2011 .

[27]  T. Sánchez-Giralda,et al.  Brunovsky's canonical form for linear dynamical systems over commutative rings , 1996 .

[28]  P. Dooren The Computation of Kronecker's Canonical Form of a Singular Pencil , 1979 .

[29]  John W. Bunce,et al.  Linear Systems over Commutative Rings , 1986 .

[30]  Harry Crane,et al.  The Ubiquitous Ewens Sampling Formula , 2016 .

[31]  Byungchan Kim,et al.  On the number of partitions of n into k different parts , 2012 .

[32]  Sonja Hohloch,et al.  Optimal transport and integer partitions , 2015, Discret. Appl. Math..

[33]  Stephan Mertens,et al.  A physicist's approach to number partitioning , 2000, Theor. Comput. Sci..

[34]  J. M. Porras,et al.  Classification of convolutional codes , 2010 .

[35]  Noemí DeCastro-García Feedback equivalence of convolutional codes over finite rings , 2017 .

[36]  J. O'Halloran Feedback equivalence of constant linear systems , 1987 .

[37]  Hans Rademacher,et al.  On the Partition Function p(n) , 1938 .

[38]  Bas Luttik A Unique Decomposition Theorem for Ordered Monoids with Applications in Process Theory , 2003, MFCS.

[39]  Ramírez Alfonsin,et al.  The diophantine frobenius problem , 2005 .

[40]  J. Golan Semirings and their applications , 1999 .