Global bifurcations of periodic orbits in the forced Van der Pol equation
暂无分享,去创建一个
John Guckenheimer | Warren Weckesser | J. Guckenheimer | Warren Weckesser | K. Hoffmann | Kathleen Hoffmann
[1] P. Szmolyan,et al. Canards in R3 , 2001 .
[2] John Guckenheimer,et al. Numerical Computation of Canards , 2000, Int. J. Bifurc. Chaos.
[3] M. Levi. Qualitative Analysis of the Periodically Forced Relaxation Oscillations , 1981 .
[4] J. Flaherty,et al. Frequency Entrainment of a Forced van der pol Oscillator. , 1977 .
[5] S. Smale. Diffeomorphisms with Many Periodic Points , 1965 .
[6] N. Levinson,et al. A Second Order Differential Equation with Singular Solutions , 1949 .
[7] J. E. Littlewood,et al. On Non-Linear Differential Equations of the Second Order: II. The Equation .. y + kf(y, . y + g(y, k) = p(t) = p 1 (t) + kp 2 (t); k > 0, f(y) > 1 , 1947 .