Thermal boundary resistance at an epitaxially perfect interface of thin films

Abstract At the interfaces in an ideal epitaxial superlattice, it may be expected that there exists no thermal boundary resistance (TBR) due to thermal motions because the interfaces are atomically perfect. However, recent researches reported that the TBR still exists at the epitaxial interfaces of superlattices. Our previous study suggested the model, which was named as the C–M model, to predict accurately the TBR at an interface by considering a mass ratio between two species. In this study, we incorporated the effect due to an intermolecular potential well ratio into the previous model. The updated C–M model was based on the classical theory of a wave reflection and transmission, and provided an excellent agreement with the results of the molecular dynamics (MD) simulation. Furthermore, it suggests no TBR condition at an interface in superlattices.

[1]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[2]  M. Matsumoto,et al.  Thermal Resistance of Crystal Interface: Molecular Dynamics Simulation. , 2002 .

[3]  C. L. Tien,et al.  Molecular Dynamics Study of Solid Thin-Film Thermal Conductivity , 1998, Heat Transfer.

[4]  T. Borca-Tasciuc,et al.  Thermal Conductivity and Heat Transfer in Superlattices , 1997 .

[5]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[6]  James Shipman,et al.  Wave Motion , 2006 .

[7]  Gang Chen,et al.  Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures , 1997 .

[8]  J. M. Haile,et al.  Molecular dynamics simulation : elementary methods / J.M. Haile , 1992 .

[9]  Arun Majumdar,et al.  Interface and strain effects on the thermal conductivity of heterostructures: A molecular dynamics study , 2002 .

[10]  Gang Chen,et al.  Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices , 1998 .

[11]  H. Pain The physics of vibration and waves , 1968 .

[12]  L. Meirovitch,et al.  Fundamentals of Vibrations , 2000 .

[13]  Shigeo Maruyama,et al.  Evaluation of the Phonon Mean Free Path in Thin Films by Using Classical Molecular Dynamics , 2003 .

[14]  Kenneth E. Goodson,et al.  Heat Transfer Regimes in Microstructures , 1992 .

[15]  S. Maruyama,et al.  Variations in the Thermal Conductivity of Insulating Thin Films with Temperature and Pressure , 2004 .

[16]  R. Pohl,et al.  Thermal boundary resistance , 1989 .

[17]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[18]  T. Shinjo,et al.  Metallic superlattices. Artificially structured materials , 1987 .

[19]  W. Saslow,et al.  One-dimensional Kapitza conductance: Comparison of the phonon mismatch theory with computer experiments , 1978 .

[20]  C. L. Tien,et al.  MOLECULAR DYNAMICS IN MICROSCALE THERMOPHYSICAL ENGINEERING , 1999 .

[21]  Seungmin Lee,et al.  Interface thermal conductance and the thermal conductivity of multilayer thin films , 2000 .

[22]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[23]  Gang Chen,et al.  Particularities of Heat Conduction in Nanostructures , 2000 .

[24]  S. Kotake,et al.  Molecular Dynamics Study of Heat Conduction in Solid Materials. , 1994 .

[25]  Richard J. Sadus,et al.  Molecular Simulation of Fluids: Theory, Algorithms and Object-Orientation , 1999 .

[26]  Patrick E. Phelan,et al.  Application of Diffuse Mismatch Theory to the Prediction of Thermal Boundary Resistance in Thin-Film High-Tc Superconductors , 1996, Microelectromechanical Systems (MEMS).

[27]  S. Phillpot,et al.  Comparison of atomic-level simulation methods for computing thermal conductivity , 2002 .

[28]  Sebastian Volz,et al.  Molecular-dynamics simulation of thermal conductivity of silicon crystals , 2000 .