Self Consistent-Charge Density-Functional Tight-Binding Method for Simulations of Biological Molecules

We apply a self-consistent charge tight-binding scheme to biomolecules. This method has been shown to give a reliable description of reaction energies, geometries and vibrational frequencies of small organic molecules. We discuss the performance of this method for model peptides and non-bonding interactions in biologically relevant molecular complexes. A comparison with semi-empirical methods and ab initio calculations will be given for DNA base pair H-bonding and stacking interactions.

[1]  A. Voityuk,et al.  MNDO calculations of systems containing hydrogen bonds , 1987 .

[2]  J. Stewart Optimization of parameters for semiempirical methods II. Applications , 1989 .

[3]  J. Šponer,et al.  Nature of Nucleic Acid−Base Stacking: Nonempirical ab Initio and Empirical Potential Characterization of 10 Stacked Base Dimers. Comparison of Stacked and H-Bonded Base Pairs , 1996 .

[4]  J. Šponer,et al.  MP2 and CCSD(T) study on hydrogen bonding, aromatic stacking and nonaromatic stacking , 1997 .

[5]  Pavel Hobza,et al.  Performance of empirical potentials (AMBER, CFF95, CVFF, CHARMM, OPLS, POLTEV), semiempirical quantum chemical methods (AM1, MNDO/M, PM3), and ab initio Hartree–Fock method for interaction of DNA bases: Comparison with nonempirical beyond Hartree–Fock results , 1997 .

[6]  O. Sankey,et al.  Geometry and energetics of DNA basepairs and triplets from first principles quantum molecular relaxations. , 1995, Biophysical journal.

[7]  J. Šponer,et al.  Structures and Energies of Hydrogen-Bonded DNA Base Pairs. A Nonempirical Study with Inclusion of Electron Correlation , 1996 .

[8]  Sándor Suhai,et al.  Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties , 1998 .

[9]  Seifert,et al.  Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon. , 1995, Physical review. B, Condensed matter.

[10]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[11]  Sándor Suhai,et al.  N-Acetyl-L-alanine N'-methylamide: a density functional analysis of the vibrational absorption and vibrational circular dichroism spectra , 1996 .

[12]  Walter R. L. Lambrecht,et al.  Tight-binding approach to Computational Materials Science , 1998 .

[13]  Thomas A. Halgren,et al.  The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters , 1992 .

[14]  Base stacking in cytosine dimer. A comparison of correlated ab initio calculations with three empirical potential models and density functional theory calculations , 1996 .