Feasibility study of an MR damper-based smart passive control system employing an electromagnetic induction device

The feasibility of a newly developed smart passive control system equipped electromagnetic induction device is experimentally investigated. An electromagnetic induction device consists of a permanent magnet and a solenoid, which produces electrical energy (i.e. induced current) according to Faraday's law of electromagnetic induction. The produced energy is applied to the magnetorheological (i.e. MR) damper to change the damping characteristics by itself without any controller or corresponding sensors for reducing structural responses. Recently, the smart passive control system was conceptually and numerically introduced without consideration of its practical applicability. This paper describes the design of an electromagnetic inductive device which is composed of a permanent magnet and a solenoid, and experiments with the MR damper-based smart passive control system on a shaking table which produces various sinusoidal and random excitations. The experimental results demonstrate that it is feasible to apply the smart passive control system equipped electromagnetic induction device for changing the damping characteristics of an MR damper.