Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness

Abstract The article reports on the enhanced hardness of nanocomposite coatings, their thermal stability, protection of the substrate against oxidation at temperatures above 1000 °C, X-ray amorphous coatings thermally stable above 1000 °C and new advanced hard nanocomposite coatings with enhanced toughness which exhibit (i) low values of the effective Young's modulus E ⁎ satisfying the condition H/E ⁎  > 0.1, (ii) high elastic recovery W e  ≥ 60%, (iii) strongly improved tribological properties, and (iv) enhanced resistance to cracking; here E ⁎  = E(1−ν 2 ), E is the Young's modulus and ν is the Poison's ratio. At the end trends of next development of hard nanocomposite coatings are briefly outlined.

[1]  E. Kusano,et al.  Interface stress induced hardness enhancement and superelasticity in polytetrafluoroethylene/metal multilayer thin films , 2011 .

[2]  Yong Qing Fu,et al.  Recent advances of superhard nanocomposite coatings: a review , 2003 .

[3]  R. Wei Plasma enhanced magnetron sputter deposition of Ti–Si–C–N based nanocomposite coatings , 2008 .

[4]  Ralf Riedel,et al.  Handbook of ceramic hard materials. , 2000 .

[5]  L. Martinu,et al.  Mechanical, tribological and erosion behaviour of super-elastic hard Ti–Si–C coatings prepared by PECVD , 2010 .

[6]  J. Thornton High Rate Thick Film Growth , 1977 .

[7]  J. Hosson,et al.  Nanostructure and properties of TiC/a-C: H composite coatings , 2005 .

[8]  J. Musil,et al.  Role of energy in low-temperature high-rate formation of hydrophilic TiO2 thin films using pulsed magnetron sputtering , 2007 .

[9]  F. Lévy,et al.  Formation of composite ternary nitride thin films by magnetron sputtering co-deposition , 2006 .

[10]  E. Djurado,et al.  Structural investigations of YSZ coatings prepared by DC magnetron sputtering , 2007 .

[11]  P. Baroch,et al.  High-rate pulsed reactive magnetron sputtering of oxide nanocomposite coatings , 2013 .

[12]  J. Musil,et al.  Low-pressure magnetron sputtering , 1998 .

[13]  V. Beresnev,et al.  Effect of the preparation conditions on the phase composition, structure, and mechanical characteristics of vacuum-Arc Zr-Ti-Si-N coatings , 2011 .

[14]  Richard W. Siegel,et al.  What do we really know about the atomic-scale structures of nanophase materials? , 1994 .

[15]  P. Zeman,et al.  Hard a-Si3N4/MeNx Nanocomposite Coatings with High Thermal Stability and High Oxidation Resistance , 2007 .

[16]  P. Novák,et al.  Tribological and mechanical properties of nanocrystalline-TiC/a-C nanocomposite thin films , 2010 .

[17]  C. Mitterer,et al.  Structure-hardness relations in sputtered Ti–Al–V–N films , 2003 .

[18]  Sukhvinder P.S. Badwal,et al.  Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity , 1992 .

[19]  P. Novák,et al.  Effect of nitrogen on tribological properties of amorphous carbon films alloyed with titanium , 2011 .

[20]  A. Argon,et al.  Limits to the strength of super- and ultrahard nanocomposite coatings , 2003 .

[21]  C. Mitterer,et al.  Structure and properties of hard and superhard Zr–Cu–N nanocomposite coatings , 2000 .

[22]  S. V. Litovchenko,et al.  Thermal stability of the phase composition, structure, and stressed state of ion-plasma condensates in the Zr-Ti-Si-N system , 2010 .

[23]  C. Mitterer,et al.  Morphology and Microstructure of Hard and Superhard Zr–Cu–N Nanocomposite Coatings , 2002 .

[24]  C. Mitterer,et al.  Low-stress superhard Ti-B films prepared by magnetron sputtering , 2003 .

[25]  F. Lévy,et al.  Structure, morphology and electrical properties of sputtered Zr–Si–N thin films: From solid solution to nanocomposite , 2006 .

[26]  Lars Hultman,et al.  Microstructural design of hard coatings , 2006 .

[27]  P. Zeman,et al.  Oxidation of Sputtered Cu, Zr, ZrCu, ZrO2, and Zr‐Cu‐O Films during Thermal Annealing in Flowing Air , 2007 .

[28]  B. Liu,et al.  Formation and Theoretical Modeling of Non‐Equilibrium Alloy Phases by Ion Mixing , 1997 .

[29]  S. Vepřek,et al.  A concept for the design of novel superhard coatings , 1995 .

[30]  J. Musil Hard and superhard nanocomposite coatings , 2000 .

[31]  J. Musil,et al.  Transparent Zr–Al–O oxide coatings with enhanced resistance to cracking , 2012 .

[32]  L. Gauckler,et al.  Thermodynamic modeling of the ZrO2–YO1.5 system , 2004 .

[33]  I. Fried,et al.  Thermal stability of nanostructured superhard coatings: A review , 2007 .

[34]  Yong Qing Fu,et al.  Toughening of hard nanostructural thin films: a critical review , 2005 .

[35]  L. Hultman,et al.  Beyond ?- C3 N4 -Fullerene-like carbon nitride : A promising coating material , 2007 .

[36]  Y. Mai,et al.  Recent advances on understanding the origin of superhardness in nanocomposite coatings: A critical review , 2006 .

[37]  J. Cizek,et al.  Reactive magnetron sputtering of hard Si-B-C-N films with a high-temperature oxidation resistance , 2005 .

[38]  L. Martinu,et al.  Reactive magnetron sputtering of CNx films: Ion bombardment effects and process characterization using optical emission spectroscopy , 1999 .

[39]  J. Musil,et al.  Superhard nanocomposite Ti1-xAlxN films prepared by magnetron sputtering , 2000 .

[40]  A. D. Pogrebnyak,et al.  REVIEWS OF TOPICAL PROBLEMS: Structures and properties of hard and superhard nanocomposite coatings , 2009 .

[41]  J. Pierson,et al.  Effect of germanium addition on the properties of reactively sputtered ZrN films , 2005 .

[42]  J. Ku,et al.  Thermal stability of Al- and Zr-doped HfO2 thin films grown by direct current magnetron sputtering , 2005 .

[43]  I. Katardjiev,et al.  Reactive sputter deposition of highly oriented AlN films at room temperature , 2002 .

[44]  J. Musil,et al.  Two-phase single layer Al-O-N nanocomposite films with enhanced resistance to cracking , 2012 .

[45]  R. Wei,et al.  Deposition of thick nitrides and carbonitrides for sand erosion protection , 2006 .

[46]  J. Musil,et al.  Toughness of hard nanostructured ceramic thin films , 2007 .

[47]  P. Zeman,et al.  Hard amorphous nanocomposite coatings with oxidation resistance above 1000°C , 2008 .

[48]  Tuning the electronic structure of solids by means of nanometer-sized microstructures , 2001 .

[49]  J. Musil,et al.  Magnetron sputtering of hard nanocomposite coatings and their properties , 2001 .

[50]  R. Andrievski Nanomaterials based on high-melting carbides, nitrides and borides , 2005 .

[51]  M. Fichtner,et al.  Is the enhanced solubility in nanocomposites an electronic effect , 2002 .

[52]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing , 1994 .

[53]  J. Musil,et al.  Magnetron sputtered CrNiN and TiMoN films: comparison of mechanical properties , 2001 .

[54]  J. Musil,et al.  Hard nanocomposite Zr-Y-N coatings, correlation between hardness and structure , 2000 .

[55]  A. D. Korotaev,et al.  Elastic stress state in superhard multielement coatings , 2009 .

[56]  R. A. Andrievskii Thermal stability of nanomaterials , 2003 .

[57]  E. Hall,et al.  The Deformation and Ageing of Mild Steel: III Discussion of Results , 1951 .

[58]  A. Matthews,et al.  Design criteria for wear-resistant nanostructured and glassy-metal coatings , 2004 .

[59]  A. Matthews,et al.  On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour , 2000 .

[60]  J. Kasl,et al.  Hard and superhard Zr–Ni–N nanocomposite films , 2001 .

[61]  T. Valente,et al.  Plasma spray deposition of ultra high temperature ceramics , 2006 .

[62]  H. Gleiter,et al.  Nanostructured materials: basic concepts and microstructure☆ , 2000 .

[63]  J. Musil,et al.  High-rate reactive deposition of transparent SiO2 films containing low amount of Zr from molten magnetron target , 2010 .

[64]  J. Musil,et al.  Hard Nanocomposite Coatings Prepared by Magnetron Sputtering , 2002 .

[65]  C. Mitterer,et al.  Thermal stability of PVD hard coatings , 2003 .

[66]  K. Lu Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties , 1996 .

[67]  G. Erkens New approaches to plasma enhanced sputtering of advanced hard coatings , 2007 .

[68]  R. Daniel,et al.  Structure and mechanical properties of magnetron sputtered Zr-Ti-Cu-N films , 2003 .

[69]  J. Musil,et al.  Properties of nanocrystalline Al–Cu–O films reactively sputtered by DC pulse dual magnetron , 2011 .

[70]  P. Zeman,et al.  Formation of crystalline Al–Ti–O thin films and their properties , 2008 .

[71]  R W Siegel,et al.  Cluster-Assembled Nanophase Materials , 1991 .

[72]  A. A. Voevodin,et al.  Superhard, functionally gradient, nanolayered and nanocomposite diamond-like carbon coatings for wear protection , 1998 .

[73]  J. Musil,et al.  The Role of Energy in Formation of Sputtered Nanocomposite Films , 2005 .

[74]  Sidney Yip,et al.  Nanocrystals: The strongest size , 1998, Nature.

[75]  Yaogen Shen,et al.  Nanostructure transition: From solid solution Ti(N,C) to nanocomposite nc-Ti(N,C)∕a-(C,CNx) , 2007 .

[76]  L. Hultman Thermal stability of nitride thin films , 2000 .

[77]  J. Musil,et al.  The effect of addition of Al in ZrO2 thin film on its resistance to cracking , 2012 .

[78]  J. Patscheider Nanocomposite Hard Coatings for Wear Protection , 2003 .

[79]  H. Gleiter,et al.  Nanostructured Materials: State of the Art and Perspectives , 1995 .

[80]  J. Musil,et al.  Effect of ion bombardment on properties of hard reactively sputtered Ti(Fe)Nx films , 2004 .