The GTZAN dataset: Its contents, its faults, their effects on evaluation, and its future use

The GTZAN dataset appears in at least 100 published works, and is the most-used public dataset for evaluation in machine listening research for music genre recognition (MGR). Our recent work, however, shows GTZAN has several faults (repetitions, mislabelings, and distortions), which challenge the interpretability of any result derived using it. In this article, we disprove the claims that all MGR systems are affected in the same ways by these faults, and that the performances of MGR systems in GTZAN are still meaningfully comparable since they all face the same faults. We identify and analyze the contents of GTZAN, and provide a catalog of its faults. We review how GTZAN has been used in MGR research, and find few indications that its faults have been known and considered. Finally, we rigorously study the effects of its faults on evaluating five different MGR systems. The lesson is not to banish GTZAN, but to use it with consideration of its contents.

[1]  Emmanuel Bigand,et al.  Seven problems that keep MIR from attracting the interest of cognition and neuroscience , 2013, Journal of Intelligent Information Systems.

[2]  Constantine Kotropoulos,et al.  Music Genre Classification: A Multilinear Approach , 2008, ISMIR.

[3]  Jyh-Shing Roger Jang,et al.  Discovering Time-Constrained Sequential Patterns for Music Genre Classification , 2012, IEEE Transactions on Audio, Speech, and Language Processing.

[4]  Victor R. Basili,et al.  Experimentation in software engineering , 1986, IEEE Transactions on Software Engineering.

[5]  Markus Schedl,et al.  From Improved Auto-Taggers to Improved Music Similarity Measures , 2012, Adaptive Multimedia Retrieval.

[6]  Xavier Serra,et al.  Evaluation in Music Information Retrieval , 2013, Journal of Intelligent Information Systems.

[7]  Kamil Behun Image features in music style recognition , 2012 .

[8]  Anne H. H. Ngu,et al.  On Efficient Music Genre Classification , 2005, DASFAA.

[9]  Zhouyu Fu,et al.  On Feature Combination for Music Classification , 2010, SSPR/SPR.

[10]  Teppo E. Ahonen Compressing lists for audio classification , 2010, MML '10.

[11]  Mohan S. Kankanhalli,et al.  Harmonicity and dynamics-based features for audio , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[12]  David J. Hand,et al.  Deconstructing Statistical Questions , 1994 .

[13]  E Tsunoo,et al.  Beyond Timbral Statistics: Improving Music Classification Using Percussive Patterns and Bass Lines , 2011, IEEE Transactions on Audio, Speech, and Language Processing.

[14]  Robert L. Glass,et al.  Science and substance: a challenge to software engineers , 1994, IEEE Software.

[15]  Pedro J. Ponce de León,et al.  Feature selection in a cartesian ensemble of feature subspace classifiers for music categorisation , 2010, MML '10.

[16]  Douglas Eck,et al.  Learning Features from Music Audio with Deep Belief Networks , 2010, ISMIR.

[17]  J. Bergstra Algorithms for Classifying Recorded Music by Genre , 2006 .

[18]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  George Tzanetakis,et al.  Musical genre classification of audio signals , 2002, IEEE Trans. Speech Audio Process..

[20]  Thomas Lidy,et al.  Evaluation of New Audio Features and Their Utilization in Novel Music Retrieval Applications , 2006 .

[21]  Simon Dixon,et al.  Probabilistic and Logic-Based Modelling of Harmony , 2010, CMMR.

[22]  Rainer Martin,et al.  Hierarchical audio classification using cepstral modulation ratio regressions based on Legendre polynomials , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[23]  Jyh-Shing Roger Jang,et al.  Combining Visual and Acoustic Features for Music Genre Classification , 2011, 2011 10th International Conference on Machine Learning and Applications and Workshops.

[24]  Jelena Kovacevic,et al.  Reproducible research in signal processing , 2009, IEEE Signal Process. Mag..

[25]  Carlos Guadarrama,et al.  Nonlinear Audio Recurrence Analysis with Application to Music Genre Classification , 2010 .

[26]  Jyh-Shing Roger Jang,et al.  Music Genre Classification via Compressive Sampling , 2010, ISMIR.

[27]  Zhouyu Fu,et al.  Learning Naive Bayes Classifiers for Music Classification and Retrieval , 2010, 2010 20th International Conference on Pattern Recognition.

[28]  Gang Chen,et al.  Relevance feedback in an adaptive space with one-class SVM for content-based music retrieval , 2008, 2008 International Conference on Audio, Language and Image Processing.

[29]  Geraint A. Wiggins,et al.  How Many Beans Make Five? The Consensus Problem in Music-Genre Classification and a New Evaluation Method for Single-Genre Categorisation Systems , 2007, ISMIR.

[30]  Constantine Kotropoulos,et al.  Music genre classification via Topology Preserving Non-Negative Tensor Factorization and sparse representations , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[31]  Kirk Martinez,et al.  Enhancing timbre model using MFCC and its time derivatives for music similarity estimation , 2012, 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO).

[32]  U. M. Feyyad Data mining and knowledge discovery: making sense out of data , 1996 .

[33]  J. Stephen Downie,et al.  The music information retrieval evaluation exchange (2005-2007): A window into music information retrieval research , 2008 .

[34]  Tao Li,et al.  A comparative study on content-based music genre classification , 2003, SIGIR.

[35]  Constantine Kotropoulos,et al.  Non-Negative Tensor Factorization Applied to Music Genre Classification , 2010, IEEE Transactions on Audio, Speech, and Language Processing.

[36]  George Tzanetakis,et al.  Audio genre classification using percussive pattern clustering combined with timbral features , 2009, 2009 IEEE International Conference on Multimedia and Expo.

[37]  Sheng Gao,et al.  Music Genres Classification using Text Categorization Method , 2006, 2006 IEEE Workshop on Multimedia Signal Processing.

[38]  Bob L. Sturm Two systems for automatic music genre recognition: what are they really recognizing? , 2012, MIRUM '12.

[39]  Patrick Roos,et al.  Zipf’s Law, Power Laws, and Music Aesthetics , 2011 .

[40]  Jayme G. A. Barbedo,et al.  Automatic Genre Classification of Musical Signals , 2007, EURASIP J. Adv. Signal Process..

[41]  Peter Shapiro Turn the beat around : the secret history of disco , 2005 .

[42]  Gert R. G. Lanckriet,et al.  Combining Feature Kernels for Semantic Music Retrieval , 2008, ISMIR.

[43]  Yannis Stylianou,et al.  Musical Genre Classification Using Nonnegative Matrix Factorization-Based Features , 2008, IEEE Transactions on Audio, Speech, and Language Processing.

[44]  Elizabeth Martin,et al.  Dictionary of Music , 1982 .

[45]  Ulas Bagci,et al.  Automatic Classification of Musical Genres Using Inter-Genre Similarity , 2007, IEEE Signal Processing Letters.

[46]  Mert Bay,et al.  The Music Information Retrieval Evaluation eXchange: Some Observations and Insights , 2010, Advances in Music Information Retrieval.

[47]  Ichiro Fujinaga,et al.  Musical genre classification: Is it worth pursuing and how can it be improved? , 2006, ISMIR.

[48]  Douglas Eck,et al.  Scalable Genre and Tag Prediction with Spectral Covariance , 2010, ISMIR.

[49]  Gerhard Widmer,et al.  Improvements of Audio-Based Music Similarity and Genre Classificaton , 2005, ISMIR.

[50]  Yi-Hsuan Yang,et al.  Dual-layer bag-of-frames model for music genre classification , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[51]  Thierry Bertin-Mahieux,et al.  Autotagger: A Model for Predicting Social Tags from Acoustic Features on Large Music Databases , 2008 .

[52]  Olivier Romain,et al.  FPGA-based radio-on-demand broadcast receiver with musical genre identification , 2012, 2012 IEEE International Symposium on Industrial Electronics.

[53]  J. Kepler,et al.  Album And Artist Effects For Audio Similarity At The Scale Of The Web , 2009 .

[54]  Yann LeCun,et al.  Feature learning and deep architectures: new directions for music informatics , 2013, Journal of Intelligent Information Systems.

[55]  François Pachet,et al.  Representing Musical Genre: A State of the Art , 2003 .

[56]  Zhouyu Fu,et al.  A Survey of Audio-Based Music Classification and Annotation , 2011, IEEE Transactions on Multimedia.

[57]  Roger B. Dannenberg Style in Music , 2010, The Structure of Style.

[58]  George A. Tsihrintzis,et al.  Music genre classification based on ensemble of signals produced by source separation methods , 2010, Intell. Decis. Technol..

[59]  Rodrigo Nakamura,et al.  New Trends in Musical Genre Classification Using Optimum-Path Forest , 2011, ISMIR.

[60]  Bob L. Sturm,et al.  On Automatic Music Genre Recognition by Sparse Representation Classification using Auditory Temporal Modulations , 2012, CMMR 2012.

[61]  Yannis Stylianou,et al.  A Statistical Approach to Musical Genre Classification using Non-Negative Matrix Factorization , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[62]  Martin A. Riedmiller,et al.  Unsupervised Learning of Local Features for Music Classification , 2012, ISMIR.

[63]  Egon van den Broek Review: Music analysis and retrieval systems for audio signals , 2005 .

[64]  Robert O. Gjerdingen,et al.  Scanning the Dial: The Rapid Recognition of Music Genres , 2008 .

[65]  L SturmBob Classification accuracy is not enough , 2013 .

[66]  Xiaolong Wang,et al.  Deep Belief Networks for Automatic Music Genre Classification , 2011, INTERSPEECH.

[67]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[68]  Tao Li,et al.  Toward intelligent music information retrieval , 2006, IEEE Transactions on Multimedia.

[69]  Tao Li,et al.  Music genre classification with taxonomy , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[70]  Thierry Bertin-Mahieux,et al.  Automatic Tagging of Audio: The State-of-the-Art , 2011 .

[71]  Andreas Rauber,et al.  Capturing the Temporal Domain in Echonest Features for Improved Classification Effectiveness , 2012, Adaptive Multimedia Retrieval.

[72]  Bob L. Sturm Evaluating music emotion recognition: Lessons from music genre recognition? , 2013, 2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW).

[73]  J. Stephen Downie,et al.  The Scientific Evaluation of Music Information Retrieval Systems: Foundations and Future , 2004, Computer Music Journal.

[74]  Bob L. Sturm An analysis of the GTZAN music genre dataset , 2012, MIRUM '12.

[75]  N. Scaringella,et al.  Automatic genre classification of music content: a survey , 2006, IEEE Signal Process. Mag..

[76]  Antoni B. Chan,et al.  Genre Classification and the Invariance of MFCC Features to Key and Tempo , 2011, MMM.

[77]  Andreas Rauber,et al.  Evaluation of Feature Extractors and Psycho-Acoustic Transformations for Music Genre Classification , 2005, ISMIR.

[78]  Arthur Flexer,et al.  A Closer Look on Artist Filters for Musical Genre Classification , 2007, ISMIR.

[79]  Charles Elkan,et al.  Fast recognition of musical genres using RBF networks , 2005, IEEE Transactions on Knowledge and Data Engineering.

[80]  Franz de Leon,et al.  Towards efficient music genre classification using FastMap , 2012 .

[81]  Israel Cohen,et al.  Musical genre classification of audio signals using geometric methods , 2010, 2010 18th European Signal Processing Conference.

[82]  Ming Li,et al.  Genre Classification via an LZ78-Based String Kernel , 2005, ISMIR.

[83]  Gaël Richard,et al.  Audio Signal Representations for Indexing in the Transform Domain , 2010, IEEE Transactions on Audio, Speech, and Language Processing.

[84]  George A. Tsihrintzis,et al.  Automatic Music Genre Classification Using Hybrid Genetic Algorithms , 2011 .

[85]  Peter J. Denning,et al.  An ACM executive committee position on the crisis in experimental computer science , 1979, CACM.

[86]  Simon Dixon,et al.  Improving Music Genre Classification Using Automatically Induced Harmony Rules , 2010 .

[87]  Marc R. Thompson,et al.  Testing a spectral-based feature set for audio genre classification , 2011 .

[88]  Andreas Rauber,et al.  Improving Genre Classification by Combination of Audio and Symbolic Descriptors Using a Transcription Systems , 2007, ISMIR.

[89]  Zehra Cataltepe,et al.  Audio Music Genre Classification Using Different Classifiers and Feature Selection Methods , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[90]  Thierry Bertin-Mahieux,et al.  On the Use of Sparce Time Relative Auditory Codes for Music , 2008, ISMIR.

[91]  Tomoko Matsui,et al.  Nonnegative matrix factorization based self-taught learning with application to music genre classification , 2012, 2012 IEEE International Workshop on Machine Learning for Signal Processing.

[92]  Antoni B. Chan,et al.  Automatic Musical Pattern Feature Extraction Using Convolutional Neural Network , 2010 .

[93]  Joakim Andén,et al.  Multiscale Scattering for Audio Classification , 2011, ISMIR.

[94]  Jean-Pierre Martens,et al.  A comparison of human and automatic musical genre classification , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[95]  Avery Wang,et al.  An Industrial Strength Audio Search Algorithm , 2003, ISMIR.

[96]  Jakob Abeßer,et al.  Improved music similarity computation based on tone objects , 2012, AM '12.

[97]  Bob L. Sturm,et al.  Revisiting Inter-Genre Similarity , 2013, IEEE Signal Processing Letters.

[98]  Julián Urbano Information Retrieval Meta-Evaluation: Challenges and Opportunities in the Music Domain , 2011, ISMIR.

[99]  Arthur Flexer,et al.  Effects of Album and Artist Filters in Audio Similarity Computed for Very Large Music Databases , 2010, Computer Music Journal.

[100]  Guojun Lu,et al.  Enhanced polyphonic music genre classification using high level features , 2009, 2009 IEEE International Conference on Signal and Image Processing Applications.

[101]  Jyh-Shing Roger Jang,et al.  Time-constrained sequential pattern discovery for music genre classification , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[102]  Bob L. Sturm A Survey of Evaluation in Music Genre Recognition , 2012, Adaptive Multimedia Retrieval.

[103]  George Tzanetakis,et al.  Manipulation, analysis and retrieval systems for audio signals , 2002 .

[104]  Tao Li,et al.  Factors in automatic musical genre classification of audio signals , 2003, 2003 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (IEEE Cat. No.03TH8684).

[105]  A. Neuringer,et al.  Music discriminations by pigeons. , 1984 .

[106]  Douglas Eck,et al.  Aggregate features and ADABOOST for music classification , 2006, Machine Learning.

[107]  Constantine Kotropoulos,et al.  Non-Negative Multilinear Principal Component Analysis of Auditory Temporal Modulations for Music Genre Classification , 2010, IEEE Transactions on Audio, Speech, and Language Processing.

[108]  Moo Young Kim,et al.  Music genre/mood classification using a feature-based modulation spectrum , 2011, International Conference on Mobile IT Convergence.

[109]  Anne H. H. Ngu,et al.  Towards Effective Content-Based Music Retrieval With Multiple Acoustic Feature Combination , 2006, IEEE Transactions on Multimedia.

[110]  M. Furst,et al.  Neural network based model for classification of music type , 1995, Eighteenth Convention of Electrical and Electronics Engineers in Israel.

[111]  Yi-Hsuan Yang,et al.  Supervised dictionary learning for music genre classification , 2012, ICMR.

[112]  A. W. Kimball,et al.  Errors of the Third Kind in Statistical Consulting , 1957 .

[113]  George A. Tsihrintzis,et al.  Optimization of an Automatic Music Genre Classification System via Hyper-Entities , 2012, 2012 Eighth International Conference on Intelligent Information Hiding and Multimedia Signal Processing.

[114]  Andreas Rauber,et al.  A Cartesian Ensemble of Feature Subspace Classifiers for Music Categorization , 2010, ISMIR.

[115]  Peter J. Denning,et al.  ACM President's Letter: What is experimental computer science? , 1980, CACM.

[116]  Sofia Cavaco,et al.  Unsupervised Music Genre Classification with a Model-Based Approach , 2011, EPIA.

[117]  A. R. Chase,et al.  Music discriminations by carp (Cyprinus carpio) , 2001 .

[118]  George A. Tsihrintzis,et al.  Artificial Immune System-Based Music Genre Classification , 2008, New Directions in Intelligent Interactive Multimedia.

[119]  Constantine Kotropoulos,et al.  A tensor-based approach for automatic music genre classification , 2008, 2008 16th European Signal Processing Conference.

[120]  Yilong Yin,et al.  Relevance feature mapping for content-based multimedia information retrieval , 2012, Pattern Recognit..

[121]  Mark B. Sandler,et al.  Music Information Retrieval Using Social Tags and Audio , 2009, IEEE Transactions on Multimedia.

[122]  L. Jayaratne,et al.  Musical Genre Classification Using Ensemble of Classifiers , 2012, 2012 Fourth International Conference on Computational Intelligence, Modelling and Simulation.

[123]  Constantine Kotropoulos,et al.  Music Genre Classification Using Locality Preserving Non-Negative Tensor Factorization and Sparse Representations , 2009, ISMIR.

[124]  Zhouyu Fu,et al.  Music classification via the bag-of-features approach , 2011, Pattern Recognit. Lett..

[125]  Enric Guaus,et al.  Audio content processing for automatic music genre classification : descriptors, databases, and classifiers , 2009 .

[126]  Geraint A. Wiggins Semantic Gap?? Schemantic Schmap!! Methodological Considerations in the Scientific Study of Music , 2009, 2009 11th IEEE International Symposium on Multimedia.

[127]  Wei Liang,et al.  A novel approach to musical genre classification using probabilistic latent semantic analysis model , 2009, 2009 IEEE International Conference on Multimedia and Expo.

[128]  Arthur Flexer,et al.  Statistical evaluation of music information retrieval experiments , 2006 .

[129]  Noor Azilah Draman,et al.  Recognizing Patterns of Music Signals to Songs Classification Using Modified AIS-Based Classifier , 2011, ICSECS.

[130]  Joan Serrà,et al.  Nonlinear audio recurrence analysis with application to genre classification , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[131]  Ingo Mierswa,et al.  Understandable models Of music collections based on exhaustive feature generation with temporal statistics , 2006, KDD '06.

[132]  Edward R. Dougherty,et al.  Scientific knowledge is possible with small-sample classification , 2013, EURASIP J. Bioinform. Syst. Biol..

[133]  Lei Wei,et al.  Regional Style Automatic Identification for Chinese Folk Songs , 2009, 2009 WRI World Congress on Computer Science and Information Engineering.

[134]  Constantine Kotropoulos,et al.  Music genre classification via sparse representations of auditory temporal modulations , 2009, 2009 17th European Signal Processing Conference.

[135]  Emilia Gómez,et al.  Musical genre classification using melody features extracted from polyphonic music signals , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[136]  Robert P.W. Duin,et al.  PRTools3: A Matlab Toolbox for Pattern Recognition , 2000 .

[137]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[138]  Steven Salzberg,et al.  On Comparing Classifiers: Pitfalls to Avoid and a Recommended Approach , 1997, Data Mining and Knowledge Discovery.

[139]  Peter J. Denning,et al.  ACM president's letter: performance analysis: experimental computer science as its best , 1981, CACM.

[140]  Yann LeCun,et al.  Unsupervised Learning of Sparse Features for Scalable Audio Classification , 2011, ISMIR.

[141]  Tomoko Matsui,et al.  Music genre classification using self-taught learning via sparse coding , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[142]  Emiru Tsunoo,et al.  Autoregressive MFCC Models for Genre Classification Improved by Harmonic-percussion Separation , 2010, ISMIR.

[143]  Rocha Bruno Genre Classification based on Predominant Melodic Pitch Contours , 2014 .

[144]  Klaus Seyerlehner FUSING BLOCK-LEVEL FEATURES FOR MUSIC SIMILARITY ESTIMATION , 2010 .

[145]  Constantine Kotropoulos,et al.  Ensemble Discriminant Sparse Projections Applied to Music Genre Classification , 2010, 2010 20th International Conference on Pattern Recognition.

[146]  Elias Pampalk,et al.  Introduction–From Genres to Tags: A Little Epistemology of Music Information Retrieval Research , 2008 .

[147]  Kun-Ming Yu,et al.  Automatic Music Genre Classification Based on Modulation Spectral Analysis of Spectral and Cepstral Features , 2009, IEEE Transactions on Multimedia.

[148]  Seungjae Lee,et al.  Higher-order moments for musical genre classification , 2011, Signal Process..

[149]  Bob L. Sturm GTZAN Index accompanying B. L. Sturm, "An Analysis of the GTZAN Music Genre Dataset", ACM MIRUM Workshop (Nov. 2012). , 2012 .

[150]  Xavier Serra,et al.  Unifying Low-Level and High-Level Music Similarity Measures , 2011, IEEE Transactions on Multimedia.

[151]  Bob L. Sturm Music genre recognition with risk and rejection , 2013, 2013 IEEE International Conference on Multimedia and Expo (ICME).

[152]  Dengsheng Zhang,et al.  A Novel Automatic Hierachical Approach to Music Genre Classification , 2012, 2012 IEEE International Conference on Multimedia and Expo Workshops.