Three-dimensional convex hull as a fruitful source of diagrams

The relationship between a three-dimensional convex hull and many important two-dimensional diagrams is surveyed, and a unifying approach to robust software for those diagrams is proposed. In this approach, instead of implementing individual algorithms, we first construct a robust algorithm for the three-dimensional convex hull, and next use it as an oracle for computing the other diagrams. The diagrams computable by this approach include the Voronoi diagram and its farthest-point versions both on the plane and on the sphere, the Laguerre Voronoi diagram and its farthest-point version both on the plane and on the sphere, and the intersection of half-spaces.

[1]  Leonidas J. Guibas,et al.  Epsilon geometry: building robust algorithms from imprecise computations , 1989, SCG '89.

[2]  Raimund Seidel,et al.  Voronoi diagrams and arrangements , 1986, Discret. Comput. Geom..

[3]  Hiroshi Imai,et al.  Voronoi Diagram in the Laguerre Geometry and its Applications , 1985, SIAM J. Comput..

[4]  Christoph M. Hoffmann,et al.  Geometric and Solid Modeling: An Introduction , 1989 .

[5]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[6]  Kokichi Sugihara,et al.  Robust Gift Wrapping for the Three-Dimensional Convex Hull , 1994, J. Comput. Syst. Sci..

[7]  B. Peroche,et al.  Error-free boundary evaluation using lazy rational arithmetic: a detailed implementation , 1993, Solid Modeling and Applications.

[8]  Victor J. Milenkovic,et al.  Verifiable Implementations of Geometric Algorithms Using Finite Precision Arithmetic , 1989, Artif. Intell..

[9]  David P. Dobkin,et al.  Recipes for geometry and numerical analysis - Part I: an empirical study , 1988, SCG '88.

[10]  M. Iri,et al.  Construction of the Voronoi diagram for 'one million' generators in single-precision arithmetic , 1992, Proc. IEEE.

[11]  Kokichi Sugihara,et al.  A solid modelling system free from topological inconsistency , 1990 .

[12]  Kokichi Sugihara,et al.  A Robust and Consistent Algorithm for Intersecting Convex Polyhedra , 1994, Comput. Graph. Forum.

[13]  Carlo H. Séquin,et al.  Consistent calculations for solids modeling , 1985, SCG '85.

[14]  Donald E. Knuth,et al.  Axioms and Hulls , 1992, Lecture Notes in Computer Science.

[15]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[16]  Kevin Q. Brown,et al.  Voronoi Diagrams from Convex Hulls , 1979, Inf. Process. Lett..

[17]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[18]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[19]  Franz Aurenhammer,et al.  Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..

[20]  Kokichi Sugihara Approximation of Generalized Voronoi Diagrams by Ordinary Voronoi Diagrams , 1993, CVGIP Graph. Model. Image Process..

[21]  Christoph M. Hoffmann,et al.  The problems of accuracy and robustness in geometric computation , 1989, Computer.

[22]  Christopher J. Van Wyk,et al.  Efficient exact arithmetic for computational geometry , 1993, SCG '93.