Three-dimensional convex hull as a fruitful source of diagrams
暂无分享,去创建一个
[1] Leonidas J. Guibas,et al. Epsilon geometry: building robust algorithms from imprecise computations , 1989, SCG '89.
[2] Raimund Seidel,et al. Voronoi diagrams and arrangements , 1986, Discret. Comput. Geom..
[3] Hiroshi Imai,et al. Voronoi Diagram in the Laguerre Geometry and its Applications , 1985, SIAM J. Comput..
[4] Christoph M. Hoffmann,et al. Geometric and Solid Modeling: An Introduction , 1989 .
[5] Herbert Edelsbrunner,et al. Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.
[6] Kokichi Sugihara,et al. Robust Gift Wrapping for the Three-Dimensional Convex Hull , 1994, J. Comput. Syst. Sci..
[7] B. Peroche,et al. Error-free boundary evaluation using lazy rational arithmetic: a detailed implementation , 1993, Solid Modeling and Applications.
[8] Victor J. Milenkovic,et al. Verifiable Implementations of Geometric Algorithms Using Finite Precision Arithmetic , 1989, Artif. Intell..
[9] David P. Dobkin,et al. Recipes for geometry and numerical analysis - Part I: an empirical study , 1988, SCG '88.
[10] M. Iri,et al. Construction of the Voronoi diagram for 'one million' generators in single-precision arithmetic , 1992, Proc. IEEE.
[11] Kokichi Sugihara,et al. A solid modelling system free from topological inconsistency , 1990 .
[12] Kokichi Sugihara,et al. A Robust and Consistent Algorithm for Intersecting Convex Polyhedra , 1994, Comput. Graph. Forum.
[13] Carlo H. Séquin,et al. Consistent calculations for solids modeling , 1985, SCG '85.
[14] Donald E. Knuth,et al. Axioms and Hulls , 1992, Lecture Notes in Computer Science.
[15] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[16] Kevin Q. Brown,et al. Voronoi Diagrams from Convex Hulls , 1979, Inf. Process. Lett..
[17] Herbert Edelsbrunner,et al. Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.
[18] Atsuyuki Okabe,et al. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.
[19] Franz Aurenhammer,et al. Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..
[20] Kokichi Sugihara. Approximation of Generalized Voronoi Diagrams by Ordinary Voronoi Diagrams , 1993, CVGIP Graph. Model. Image Process..
[21] Christoph M. Hoffmann,et al. The problems of accuracy and robustness in geometric computation , 1989, Computer.
[22] Christopher J. Van Wyk,et al. Efficient exact arithmetic for computational geometry , 1993, SCG '93.