The Stochastic Quasi-chemical Model for Bacterial Growth: Variational Bayesian Parameter Update

We develop Bayesian methodologies for constructing and estimating a stochastic quasi-chemical model (QCM) for bacterial growth. The deterministic QCM, described as a nonlinear system of ODEs, is treated as a dynamical system with random parameters, and a variational approach is used to approximate their probability distributions and explore the propagation of uncertainty through the model. The approach consists of approximating the parameters’ posterior distribution by a probability measure chosen from a parametric family, through minimization of their Kullback–Leibler divergence.

[1]  David M. Blei,et al.  Nonparametric variational inference , 2012, ICML.

[2]  D. A. Ratkowsky,et al.  Quantitative microbiology: a basis for food safety. , 1997, Emerging infectious diseases.

[3]  W. E. Ricker,et al.  11 – Growth Rates and Models , 1979 .

[4]  N. Zabaras,et al.  Computationally Efficient Variational Approximations for Bayesian Inverse Problems , 2016 .

[5]  Christopher J Doona,et al.  A quasi-chemical model for the growth and death of microorganisms in foods by non-thermal and high-pressure processing. , 2005, International journal of food microbiology.

[6]  Michail D. Vrettas,et al.  Estimating parameters in stochastic systems: A variational Bayesian approach , 2011 .

[7]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[8]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[9]  Hugh F. Durrant-Whyte,et al.  On entropy approximation for Gaussian mixture random vectors , 2008, 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems.

[10]  József Baranyi,et al.  A non-autonomous differential equation to model bacterial growth. , 1993 .

[11]  Jon T. Schnute,et al.  A Versatile Growth Model with Statistically Stable Parameters , 1981 .

[12]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[13]  Roger G. Ghanem,et al.  Efficient Bayesian Experimentation Using an Expected Information Gain Lower Bound , 2015, SIAM/ASA J. Uncertain. Quantification.

[14]  Christopher J Doona,et al.  Inactivation kinetics of Listeria monocytogenes by high-pressure processing: pressure and temperature variation. , 2012, Journal of food science.

[15]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[16]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[17]  Gideon Simpson,et al.  Algorithms for Kullback-Leibler Approximation of Probability Measures in Infinite Dimensions , 2014, SIAM J. Sci. Comput..

[18]  R. C. Whiting,et al.  Modeling bacterial survival in unfavorable environments , 1993, Journal of Industrial Microbiology.

[19]  J. C. Quinn,et al.  Systematic variational method for statistical nonlinear state and parameter estimation. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  P. Bickel,et al.  Mathematical Statistics: Basic Ideas and Selected Topics , 1977 .

[21]  F. Rombouts,et al.  Modeling of the Bacterial Growth Curve , 1990, Applied and environmental microbiology.

[22]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[23]  I. Taub,et al.  The mathematical properties of the quasi-chemical model for microorganism growth-death kinetics in foods. , 2005, International journal of food microbiology.

[24]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[25]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[26]  R. C. Whiting,et al.  Model for the survival of Staphylococcus aureus in nongrowth environments. , 1996, International journal of food microbiology.

[27]  Benjamin Gompertz,et al.  XXIV. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. In a letter to Francis Baily, Esq. F. R. S. &c , 1825, Philosophical Transactions of the Royal Society of London.

[28]  A. Goldbeter,et al.  Biochemical Oscillations And Cellular Rhythms: Contents , 1996 .

[29]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[30]  J. Rosenthal,et al.  Optimal scaling of discrete approximations to Langevin diffusions , 1998 .

[31]  Peng Chen,et al.  Uncertainty propagation using infinite mixture of Gaussian processes and variational Bayesian inference , 2015, J. Comput. Phys..

[32]  R. C. Whiting,et al.  When is simple good enough: a comparison of the Gompertz, Baranyi, and three-phase linear models for fitting bacterial growth curves , 1997 .

[33]  Harvey Thomas Banks,et al.  Modeling and estimating uncertainty in parameter estimation , 2001 .

[34]  F. E. Feeherry,et al.  A Quasi-Chemical Kinetics Model for the Growth and Death of Staphylococcus aureus in Intermediate Moisture Bread , 2003 .

[35]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[36]  R. L. Buchanan Predictive microbiology: mathematical modeling of microbial growth in foods , 1992 .

[37]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[38]  Shrikanth S. Narayanan,et al.  Markov Chain Monte Carlo Inference of Parametric Dictionaries for Sparse Bayesian Approximations , 2016, IEEE Transactions on Signal Processing.

[39]  J Baranyi,et al.  A dynamic approach to predicting bacterial growth in food. , 1994, International journal of food microbiology.