Symbolic analysis of indicator time series by quantitative sequence alignment
暂无分享,去创建一个
Lukas Pichl | Taisei Kaizoji | Takuya Yamano | Kodai Sato | Jan-Michael Rost | L. Pichl | T. Kaizoji | T. Yamano | J. Rost | Kodai Sato
[1] Helmut Lütkepohl,et al. Applied Time Series Econometrics , 2004 .
[2] Charlene Xie,et al. Generalized Autoregressive Conditional Heteroskedasticity in Credit Risk Measurement , 2009, 2009 International Conference on Management and Service Science.
[3] João Meidanis,et al. Introduction to computational molecular biology , 1997 .
[4] P. Bühlmann. Extreme events from the return-volume process: a discretization approach for complexity reduction , 1998 .
[5] M S Waterman,et al. Identification of common molecular subsequences. , 1981, Journal of molecular biology.
[6] S. K. Park,et al. Random number generators: good ones are hard to find , 1988, CACM.
[7] Eugene W. Myers,et al. Optimal alignments in linear space , 1988, Comput. Appl. Biosci..
[8] Georg Dorffner,et al. The benefit of information reduction for trading strategies , 2002 .
[9] Webb Miller,et al. A space-efficient algorithm for local similarities , 1990, Comput. Appl. Biosci..
[10] Jaakko Astola,et al. Adaptive denoising and lossy compression of images in transform domain , 1999, J. Electronic Imaging.
[11] Daniel S. Hirschberg,et al. Algorithms for the Longest Common Subsequence Problem , 1977, JACM.
[12] S. B. Needleman,et al. A general method applicable to the search for similarities in the amino acid sequence of two proteins. , 1970, Journal of molecular biology.
[13] R. Bellman. Dynamic programming. , 1957, Science.
[14] Ingoo Han,et al. Optimal Multi-Scale Time Series Decomposition for Financial Forecasting using Wavelet Thresholding Techniques , 1999, RSFDGrC.