Report on test matrices for generalized inverses
暂无分享,去创建一个
[1] Charles L. Lawson,et al. Solving least squares problems , 1976, Classics in applied mathematics.
[2] A. Berman. Nonnegative matrices which are equal to their generalized inverse , 1974 .
[3] James Hardy Wilkinson,et al. Rounding errors in algebraic processes , 1964, IFIP Congress.
[4] J. Neumann,et al. Numerical inverting of matrices of high order , 1947 .
[5] Adi Ben-Israel,et al. Generalized inverses: theory and applications , 1974 .
[6] M. Saunders,et al. A Bidiagonalization Algorithm for Sparse Linear Equations and Least-Squares Problems. , 1978 .
[7] Zahari Zlatev,et al. A testing scheme for subroutines solving large linear problems , 1981, Comput. Chem..
[8] W. Givens. Numerical Computation of the Characteristic Values of a Real Symmetric Matrix , 1954 .
[9] Gerhard Zielke. Testmatrizen mit freien Parametern , 2005, Computing.
[10] G. Stewart,et al. On the Numerical Properties of an Iterative Method for Computing the Moore–Penrose Generalized Inverse , 1974 .
[11] J. Westlake. Handbook of Numerical Matrix Inversion and Solution of Linear Equations , 1968 .
[12] Roy H. Wampler. A Report on the Accuracy of Some Widely Used Least Squares Computer Programs , 1970 .
[13] Gerhard Zielke,et al. Testmatrizen mit maximaler Konditionszahl , 1974, Computing.
[14] J. H. Wilkinson,et al. Handbook for Automatic Computation. Vol II, Linear Algebra , 1973 .
[15] G. Zielke. Generalizations of a Rutishauser test matrix with exact Moore-Penrose inverses , 1981, SGNM.
[16] C. D. Meyer,et al. Generalized inverses of linear transformations , 1979 .
[17] R. Penrose. A Generalized inverse for matrices , 1955 .
[18] John R. Rice. SQUARS: AN ALGORITHM FOR LEAST-SQUARES APPROXIMATION**This work was supported in part by NSF Grant GP-05850. , 1971 .
[19] Werner Sautter,et al. Fehleranalyse für die Gauß-Elimination zur Berechnung der Lösung minimaler Länge , 1978 .
[20] J. Neumann,et al. Numerical inverting of matrices of high order. II , 1951 .
[21] H. Heinrich. R. Bellman, Introduction to Matrix Analysis. XX + 328 S. London 1960. McGraw-Hill. Preis geb. 77s. 6d , 1961 .
[22] George D. Poole,et al. A class of Hessenberg matrices with known pseudoinverse and Drazin inverse , 1975 .
[23] J. H. Wilkinson. Modern Error Analysis , 1971 .
[24] Kern O. Kymn,et al. Alternative computing formulas for the generalized inverse and the evaluation of their performances , 1979 .
[25] Alston S. Householder,et al. The Theory of Matrices in Numerical Analysis , 1964 .
[26] C. Lawson,et al. Solving least squares problems , 1976, Classics in applied mathematics.
[27] Robert Todd Gregory,et al. A collection of matrices for testing computational algorithms , 1969 .
[28] Peter Deuflhard,et al. On rank-deficient pseudoinverses , 1980 .
[29] N. Abdelmalek. Round off error analysis for Gram-Schmidt method and solution of linear least squares problems , 1971 .
[30] L. Mirsky,et al. Introduction to Linear Algebra , 1965, The Mathematical Gazette.
[31] Gene H. Golub,et al. Calculating the singular values and pseudo-inverse of a matrix , 2007, Milestones in Matrix Computation.
[32] G. Stewart. On the Perturbation of Pseudo-Inverses, Projections and Linear Least Squares Problems , 1977 .
[33] Marilyn Bohl,et al. Information processing , 1971 .
[34] Nai–Kuan Tsao. A Note on Implementing the Householder Transformation , 1975 .
[35] Masaaki Sibuya,et al. Numerical algorithms for the Moore-Penrose inverse of a matrix: Direct methods , 1972 .
[36] H. Rutishauser. Once again: The least square problem , 1968 .
[37] G. Forsythe,et al. Computer solution of linear algebraic systems , 1969 .
[38] Roy H. Wampler. An evaluation of linear least squares computer programs , 1969 .
[39] James Hardy Wilkinson,et al. Error Analysis of Direct Methods of Matrix Inversion , 1961, JACM.
[40] Michael A. Saunders,et al. LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.
[41] K. Tanabe,et al. Conjugate-gradient method for computing the Moore-Penrose inverse and rank of a matrix , 1977 .
[42] Basic Numerical Mathematics , 1977 .
[43] B. Noble,et al. Methods for Computing the Moorse-Penrose Generalized Inverse, and Related Matters , 1976 .
[44] Richard Bellman,et al. Introduction to Matrix Analysis , 1972 .
[45] Ulkich Tautenhahn. Zur Auswahl glatter Lösungen über der Lösungsmannigfaltigkeit unterbestimmter schlechtkonditionierter Systeme , 1981 .
[46] Gene H. Golub,et al. Singular value decomposition and least squares solutions , 1970, Milestones in Matrix Computation.
[47] A. Sluis,et al. Stability of the solutions of linear least squares problems , 1974 .
[48] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[49] Jörn Springer. Exact solution of general integer systems of linear equations , 1986, TOMS.
[50] G. Zielke. A survey of generalized matrix inverses , 1984 .
[51] R. Penrose. On best approximate solutions of linear matrix equations , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.
[52] T. L. Boullion,et al. Computation of Pseudoinverse Matrices Using Residue Arithmetic , 1972 .
[53] Å. Björck. Solving linear least squares problems by Gram-Schmidt orthogonalization , 1967 .
[54] G. Zielke. Verallgemeinerungen einer Testmatrix von Rutishauser mit exakten MOORE-PENROSE-Inversen , 1981 .
[55] D. Faddeev,et al. Computational Methods of Linear Algebra , 1959 .
[56] Morris Newman,et al. The Evaluation of Matrix Inversion Programs , 1958 .
[57] J. Springer. Die exakte Berechnung der Moore-Penrose-Inversen einer Matrix durch Residuenarithmetik , 1983 .
[58] D. Faddeev,et al. Computational methods of linear algebra , 1959 .
[59] P. Wedin. Perturbation theory for pseudo-inverses , 1973 .
[60] J. Uhlig. C. Forsythe and C. B. Moler, Computer Solution of Linear Algebraic Systems. (Series in Automatic Computation) XI + 148 S. Englewood Cliffs, N.J. 1967. Prentice-Hall, Inc. Preis geb. 54 s. net , 1972 .
[61] Nabih N. Abdelmalek,et al. On the solution of the linear least squares problems and pseudo-inverses , 1974, Computing.
[62] G. Stewart,et al. Rank degeneracy and least squares problems , 1976 .
[63] James W. Longley. An Appraisal of Least Squares Programs for the Electronic Computer from the Point of View of the User , 1967 .
[64] G. Golub,et al. Iterative refinements of linear least squares solutions by Householder transformations , 1968 .
[65] Ben Noble. A Method for Computing the Generalized Inverse of a Matrix , 1966 .
[66] Test matrices for generalized inverses , 1978, SGNM.
[67] E. V. Krishnamurthy,et al. Residue Arithmetic Algorithms for Exact Computation of g-Inverses of Matrices , 1976 .
[68] Alston S. Householder,et al. Handbook for Automatic Computation , 1960, Comput. J..
[69] G. Stewart. The Efficient Generation of Random Orthogonal Matrices with an Application to Condition Estimators , 1980 .
[70] J. B. Rosen,et al. Computation of the pseudoinverse of a matrix of unknown rank , 1964 .