Mixed Integer Programming

A linear mixed integer program is an optimization problem in which a nonempty subset of integer variables (unknowns) and a subset of real-valued (continuous) variables exist, the constraints are all linear equations or inequalities, and the objective is a linear function to be minimized (or maximized). After presenting several practical applications of mixed integer programming, we describe the main classes of algorithms, branch-and-bound and branch-and-cut, that are used to solve this hard class of problems. Considerable attention is paid to ways to improve solution times, involving preprocessing, reformulation with cuts and/or new variables, and heuristics.

[1]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988, Wiley interscience series in discrete mathematics and optimization.

[2]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[3]  Laurence A. Wolsey,et al.  Strong formulations for mixed integer programs: valid inequalities and extended formulations , 2003, Math. Program..

[4]  Sven Leyffer,et al.  Solving mixed integer nonlinear programs by outer approximation , 1994, Math. Program..

[5]  J. F. Benders Partitioning procedures for solving mixed-variables programming problems , 1962 .

[6]  Egon Balas,et al.  Facets of the knapsack polytope , 1975, Math. Program..

[7]  Thorsten Koch,et al.  Branching rules revisited , 2005, Oper. Res. Lett..

[8]  Martin W. P. Savelsbergh,et al.  Preprocessing and Probing Techniques for Mixed Integer Programming Problems , 1994, INFORMS J. Comput..

[9]  A. M. Geoffrion Generalized Benders decomposition , 1972 .

[10]  Erling D. Andersen,et al.  Presolving in linear programming , 1995, Math. Program..

[11]  Claude Le Pape,et al.  Exploring relaxation induced neighborhoods to improve MIP solutions , 2005, Math. Program..

[12]  Martin W. P. Savelsbergh,et al.  Branch-and-Price: Column Generation for Solving Huge Integer Programs , 1998, Oper. Res..

[13]  George B. Dantzig,et al.  Decomposition Principle for Linear Programs , 1960 .

[14]  Peter L. Hammer,et al.  Facet of regular 0–1 polytopes , 1975, Math. Program..

[15]  Egon Balas,et al.  On the Dimension of Projected Polyhedra , 1998, Discret. Appl. Math..

[16]  Laurence A. Wolsey,et al.  Faces for a linear inequality in 0–1 variables , 1975, Math. Program..

[17]  Nikolaos V. Sahinidis,et al.  Global optimization of mixed-integer nonlinear programs: A theoretical and computational study , 2004, Math. Program..

[18]  Gérard Cornuéjols,et al.  Valid inequalities for mixed integer linear programs , 2007, Math. Program..

[19]  Laurence A. Wolsey,et al.  Cutting planes in integer and mixed integer programming , 2002, Discret. Appl. Math..

[20]  Ignacio E. Grossmann,et al.  An outer-approximation algorithm for a class of mixed-integer nonlinear programs , 1986, Math. Program..