Optimal actuator design based on shape calculus

An approach to optimal actuator design based on shape and topology optimisation techniques is presented. For linear diffusion equations, two scenarios are considered. For the first one, best actuators are determined depending on a given initial condition. In the second scenario, optimal actuators are determined based on all initial conditions not exceeding a chosen norm. Shape and topological sensitivities of these cost functionals are determined. A numerical algorithm for optimal actuator design based on the sensitivities and a level-set method is presented. Numerical results support the proposed methodology.

[1]  Alain Bensoussan,et al.  Optimization of sensors' location in a distributed filtering problem , 1972 .

[2]  A. El Jai,et al.  Sensors and controls in the analysis of distributed systems , 1988 .

[3]  Amir Khajepour,et al.  An algorithm for LQ optimal actuator location , 2013 .

[4]  F. Tröltzsch Optimale Steuerung partieller Differentialgleichungen , 2005 .

[5]  Kazufumi Ito,et al.  Variational approach to shape derivatives , 2008 .

[6]  Mary Frecker,et al.  Recent Advances in Optimization of Smart Structures and Actuators , 2003 .

[7]  G. Allaire,et al.  Structural optimization using sensitivity analysis and a level-set method , 2004 .

[8]  Enrique Zuazua,et al.  Actuator Design for Parabolic Distributed Parameter Systems with the Moment Method , 2017, SIAM J. Control. Optim..

[9]  K. Sturm,et al.  Distributed shape derivative via averaged adjoint method and applications , 2015, 1509.01816.

[10]  E. Zuazua,et al.  Optimal Shape and Location of Sensors for Parabolic Equations with Random Initial Data , 2014, Archive for Rational Mechanics and Analysis.

[11]  J. Danskin The Theory of Max-Min, with Applications , 1966 .

[12]  Michael A. Demetriou,et al.  Using $\BBH_{2}$-Control Performance Metrics for the Optimal Actuator Location of Distributed Parameter Systems , 2015, IEEE Transactions on Automatic Control.

[13]  Heiko Andrä,et al.  A new algorithm for topology optimization using a level-set method , 2006, J. Comput. Phys..

[14]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[15]  Kirsten Morris,et al.  H∞-Optimal Actuator Location , 2013, IEEE Transactions on Automatic Control.

[16]  Grégoire Allaire,et al.  Long Time Behavior of a Two-Phase Optimal Design for the Heat Equation , 2010, SIAM J. Control. Optim..

[17]  Michael Hintermüller,et al.  Optimal Sensor Placement: A Robust Approach , 2016, SIAM J. Control. Optim..

[18]  Kevin Sturm,et al.  Shape Differentiability Under Non-linear PDE Constraints , 2015 .

[19]  Antoine Henrot,et al.  A Spillover Phenomenon in the Optimal Location of Actuators , 2005, SIAM J. Control. Optim..

[20]  M. C. Delfour,et al.  Shapes and Geometries - Metrics, Analysis, Differential Calculus, and Optimization, Second Edition , 2011, Advances in design and control.

[21]  Arnaud Münch,et al.  Optimal distribution of the internal null control for the one-dimensional heat equation , 2011 .

[22]  Michael A. Demetriou,et al.  Optimal actuator/sensor location for active noise regulator and tracking control problems , 2000 .

[23]  Carlos S. Kubrusly,et al.  Sensors and controllers location in distributed systems - A survey , 1985, Autom..

[24]  P. Bernhard,et al.  On a theorem of Danskin with an application to a theorem of Von Neumann-Sion , 1995 .

[25]  Michel C. Delfour,et al.  Shape sensitivity analysis via min max differentiability , 1988 .

[26]  Arnaud Münch,et al.  Numerical approximation of bang-bang controls for the heat equation: An optimal design approach , 2013, Syst. Control. Lett..

[27]  Kirsten Morris Linear-Quadratic Optimal Actuator Location , 2011, IEEE Transactions on Automatic Control.

[28]  Samuel Amstutz,et al.  Augmented Lagrangian for cone constrained topology optimization , 2011, Comput. Optim. Appl..

[29]  Maurizio Falcone,et al.  An Efficient Policy Iteration Algorithm for Dynamic Programming Equations , 2013 .

[30]  Jan Sokolowski,et al.  On the Topological Derivative in Shape Optimization , 1999 .

[31]  Alessandro Alla,et al.  An Efficient Policy Iteration Algorithm for Dynamic Programming Equations , 2013, SIAM J. Sci. Comput..

[32]  Enrique Zuazua,et al.  Optimal location of controllers for the one-dimensional wave equation , 2013 .

[33]  J. Wloka,et al.  Partielle differentialgleichungen : sobolevraume und Randwertaufgaben , 1982 .

[34]  Marc M. J. van de Wal,et al.  A review of methods for input/output selection , 2001, Autom..

[35]  Amir Khajepour,et al.  Stability and robust position control of hysteretic systems , 2010 .

[36]  Kevin Sturm Minimax Lagrangian Approach to the Differentiability of Nonlinear PDE Constrained Shape Functions Without Saddle Point Assumption , 2015, SIAM J. Control. Optim..

[37]  Arnaud Münch,et al.  Optimal location of the support of the control for the 1-D wave equation: numerical investigations , 2009, Comput. Optim. Appl..