Optimal actuator design based on shape calculus
暂无分享,去创建一个
[1] Alain Bensoussan,et al. Optimization of sensors' location in a distributed filtering problem , 1972 .
[2] A. El Jai,et al. Sensors and controls in the analysis of distributed systems , 1988 .
[3] Amir Khajepour,et al. An algorithm for LQ optimal actuator location , 2013 .
[4] F. Tröltzsch. Optimale Steuerung partieller Differentialgleichungen , 2005 .
[5] Kazufumi Ito,et al. Variational approach to shape derivatives , 2008 .
[6] Mary Frecker,et al. Recent Advances in Optimization of Smart Structures and Actuators , 2003 .
[7] G. Allaire,et al. Structural optimization using sensitivity analysis and a level-set method , 2004 .
[8] Enrique Zuazua,et al. Actuator Design for Parabolic Distributed Parameter Systems with the Moment Method , 2017, SIAM J. Control. Optim..
[9] K. Sturm,et al. Distributed shape derivative via averaged adjoint method and applications , 2015, 1509.01816.
[10] E. Zuazua,et al. Optimal Shape and Location of Sensors for Parabolic Equations with Random Initial Data , 2014, Archive for Rational Mechanics and Analysis.
[11] J. Danskin. The Theory of Max-Min, with Applications , 1966 .
[12] Michael A. Demetriou,et al. Using $\BBH_{2}$-Control Performance Metrics for the Optimal Actuator Location of Distributed Parameter Systems , 2015, IEEE Transactions on Automatic Control.
[13] Heiko Andrä,et al. A new algorithm for topology optimization using a level-set method , 2006, J. Comput. Phys..
[14] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[15] Kirsten Morris,et al. H∞-Optimal Actuator Location , 2013, IEEE Transactions on Automatic Control.
[16] Grégoire Allaire,et al. Long Time Behavior of a Two-Phase Optimal Design for the Heat Equation , 2010, SIAM J. Control. Optim..
[17] Michael Hintermüller,et al. Optimal Sensor Placement: A Robust Approach , 2016, SIAM J. Control. Optim..
[18] Kevin Sturm,et al. Shape Differentiability Under Non-linear PDE Constraints , 2015 .
[19] Antoine Henrot,et al. A Spillover Phenomenon in the Optimal Location of Actuators , 2005, SIAM J. Control. Optim..
[20] M. C. Delfour,et al. Shapes and Geometries - Metrics, Analysis, Differential Calculus, and Optimization, Second Edition , 2011, Advances in design and control.
[21] Arnaud Münch,et al. Optimal distribution of the internal null control for the one-dimensional heat equation , 2011 .
[22] Michael A. Demetriou,et al. Optimal actuator/sensor location for active noise regulator and tracking control problems , 2000 .
[23] Carlos S. Kubrusly,et al. Sensors and controllers location in distributed systems - A survey , 1985, Autom..
[24] P. Bernhard,et al. On a theorem of Danskin with an application to a theorem of Von Neumann-Sion , 1995 .
[25] Michel C. Delfour,et al. Shape sensitivity analysis via min max differentiability , 1988 .
[26] Arnaud Münch,et al. Numerical approximation of bang-bang controls for the heat equation: An optimal design approach , 2013, Syst. Control. Lett..
[27] Kirsten Morris. Linear-Quadratic Optimal Actuator Location , 2011, IEEE Transactions on Automatic Control.
[28] Samuel Amstutz,et al. Augmented Lagrangian for cone constrained topology optimization , 2011, Comput. Optim. Appl..
[29] Maurizio Falcone,et al. An Efficient Policy Iteration Algorithm for Dynamic Programming Equations , 2013 .
[30] Jan Sokolowski,et al. On the Topological Derivative in Shape Optimization , 1999 .
[31] Alessandro Alla,et al. An Efficient Policy Iteration Algorithm for Dynamic Programming Equations , 2013, SIAM J. Sci. Comput..
[32] Enrique Zuazua,et al. Optimal location of controllers for the one-dimensional wave equation , 2013 .
[33] J. Wloka,et al. Partielle differentialgleichungen : sobolevraume und Randwertaufgaben , 1982 .
[34] Marc M. J. van de Wal,et al. A review of methods for input/output selection , 2001, Autom..
[35] Amir Khajepour,et al. Stability and robust position control of hysteretic systems , 2010 .
[36] Kevin Sturm. Minimax Lagrangian Approach to the Differentiability of Nonlinear PDE Constrained Shape Functions Without Saddle Point Assumption , 2015, SIAM J. Control. Optim..
[37] Arnaud Münch,et al. Optimal location of the support of the control for the 1-D wave equation: numerical investigations , 2009, Comput. Optim. Appl..