Studying the Dark Triad of Personality through Twitter Behavior

Research into the darker traits of human nature is growing in interest especially in the context of increased social media usage. This allows users to express themselves to a wider online audience. We study the extent to which the standard model of dark personality -- the dark triad -- consisting of narcissism, psychopathy and Machiavellianism, is related to observable Twitter behavior such as platform usage, posted text and profile image choice. Our results show that we can map various behaviors to psychological theory and study new aspects related to social media usage. Finally, we build a machine learning algorithm that predicts the dark triad of personality in out-of-sample users with reliable accuracy.

[1]  K. Pisanski,et al.  Selfie posting behaviors are associated with narcissism among men , 2015 .

[2]  Lie Lu,et al.  A generic framework of user attention model and its application in video summarization , 2005, IEEE Trans. Multim..

[3]  A. Furnham,et al.  The Dark Triad of Personality: A 10 Year Review , 2013 .

[4]  Fabio Celli,et al.  Automatic Personality and Interaction Style Recognition from Facebook Profile Pictures , 2014, ACM Multimedia.

[5]  Zellig S. Harris,et al.  Distributional Structure , 1954 .

[6]  D. Perrett,et al.  Personality judgments from natural and composite facial images: More evidence for a "kernel of truth" in social perception , 2006 .

[7]  Peter K. Jonason,et al.  The costs and benefits of the Dark Triad : implications for mate poaching and mate retention tactics , 2010 .

[8]  Jure Leskovec,et al.  Antisocial Behavior in Online Discussion Communities , 2015, ICWSM.

[9]  Margaret L. Kern,et al.  Personality, Gender, and Age in the Language of Social Media: The Open-Vocabulary Approach , 2013, PloS one.

[10]  Kalina Bontcheva,et al.  Where's @wally?: a classification approach to geolocating users based on their social ties , 2013, HT.

[11]  Carolyn Penstein Rosé,et al.  Author Age Prediction from Text using Linear Regression , 2011, LaTeCH@ACL.

[12]  John D. Burger,et al.  Discriminating Gender on Twitter , 2011, EMNLP.

[13]  Carlo Strapparava,et al.  WordNet Affect: an Affective Extension of WordNet , 2004, LREC.

[14]  Lyle H. Ungar,et al.  Discovering User Attribute Stylistic Differences via Paraphrasing , 2016, AAAI.

[15]  Michael Eid,et al.  Narcissistic power poster? On the relationship between narcissism and status updating activity on Facebook , 2014 .

[16]  Zellig S. Harris,et al.  Distributional Structure , 1954 .

[17]  David Yarowsky,et al.  Classifying latent user attributes in twitter , 2010, SMUC '10.

[18]  Yoram Bachrach,et al.  Studying User Income through Language, Behaviour and Affect in Social Media , 2015, PloS one.

[19]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[20]  Kyumin Lee,et al.  You are where you tweet: a content-based approach to geo-locating twitter users , 2010, CIKM.

[21]  L. Eyde,et al.  Psychological testing and psychological assessment. A review of evidence and issues. , 2001, The American psychologist.

[22]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[23]  Dirk Hovy,et al.  Tagging Performance Correlates with Author Age , 2015, ACL.

[24]  Alessandro Vinciarelli,et al.  Face-Based Automatic Personality Perception , 2014, ACM Multimedia.

[25]  Soraya Mehdizadeh,et al.  Self-Presentation 2.0: Narcissism and Self-Esteem on Facebook , 2010, Cyberpsychology Behav. Soc. Netw..

[26]  Mark Dredze,et al.  Quantifying Mental Health Signals in Twitter , 2014, CLPsych@ACL.

[27]  Margaret C. Rooney,et al.  The Dark Triad and trait self-objectification as predictors of men's use and self-presentation behaviors on social networking sites , 2015 .

[28]  Jennifer Golbeck,et al.  Negativity and anti-social attention seeking among narcissists on Twitter: A linguistic analysis , 2016, First Monday.

[29]  Maarten Sap,et al.  Mental Illness Detection at the World Well-Being Project for the CLPsych 2015 Shared Task , 2015, CLPsych@HLT-NAACL.

[30]  Maarten Sap,et al.  The role of personality, age, and gender in tweeting about mental illness , 2015, CLPsych@HLT-NAACL.

[31]  Eric Horvitz,et al.  Social media as a measurement tool of depression in populations , 2013, WebSci.

[32]  Lyle H. Ungar,et al.  Exploring Stylistic Variation with Age and Income on Twitter , 2016, ACL.

[33]  Eric B. Weiser #Me: Narcissism and its facets as predictors of selfie-posting frequency. , 2015 .

[34]  Lyle H. Ungar,et al.  Analyzing Personality through Social Media Profile Picture Choice , 2016, ICWSM.

[35]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[36]  Lyle H. Ungar,et al.  Analyzing Biases in Human Perception of User Age and Gender from Text , 2016, ACL.

[37]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[38]  T. Marshall,et al.  The Big Five, Self-Esteem, and Narcissism as Predictors of the Topics People Write About in Facebook Status Updates , 2015 .

[39]  Ingemar J. Cox,et al.  Inferring the Socioeconomic Status of Social Media Users Based on Behaviour and Language , 2016, ECIR.

[40]  T. Graepel,et al.  Private traits and attributes are predictable from digital records of human behavior , 2013, Proceedings of the National Academy of Sciences.

[41]  Svitlana Volkova,et al.  Online Bayesian Models for Personal Analytics in Social Media , 2015, AAAI.

[42]  D. Paulhus,et al.  The Dark Triad of personality: Narcissism, Machiavellianism, and psychopathy , 2002 .

[43]  Maarten Sap,et al.  Developing Age and Gender Predictive Lexica over Social Media , 2014, EMNLP.

[44]  Fenne große Deters,et al.  Narcissism and the Use of Personal Pronouns Revisited , 2022 .

[45]  Elliot T. Panek,et al.  Mirror or Megaphone?: How relationships between narcissism and social networking site use differ on Facebook and Twitter , 2013 .

[46]  Ana-Maria Popescu,et al.  A Machine Learning Approach to Twitter User Classification , 2011, ICWSM.

[47]  S. Sikström,et al.  The dark side of Facebook: Semantic representations of status updates predict the Dark Triad of personality , 2014 .

[48]  Glenn Geher,et al.  What lies beneath the Dark Triad Dirty Dozen : varied relations with the Big Five , 2013 .

[49]  Gregory J. Park,et al.  Predicting Dark Triad Personality Traits from Twitter Usage and a Linguistic Analysis of Tweets , 2012, 2012 11th International Conference on Machine Learning and Applications.

[50]  Peter D. Turney,et al.  Emotions Evoked by Common Words and Phrases: Using Mechanical Turk to Create an Emotion Lexicon , 2010, HLT-NAACL 2010.

[51]  D. Goh,et al.  Narcissism, extraversion and adolescents' self-presentation on Facebook. , 2011 .

[52]  Carlo Strapparava,et al.  Learning to identify emotions in text , 2008, SAC '08.

[53]  Svitlana Volkova,et al.  Inferring Latent User Properties from Texts Published in Social Media , 2015, AAAI.

[54]  Svitlana Volkova,et al.  Inferring User Political Preferences from Streaming Communications , 2014, ACL.

[55]  Trevor Cohn,et al.  Predicting and Characterising User Impact on Twitter , 2014, EACL.

[56]  Weisi Lin,et al.  Do Others Perceive You As You Want Them To?: Modeling Personality based on Selfies , 2015, ASM@ACM Multimedia.

[57]  Geoffrey Zweig,et al.  Linguistic Regularities in Continuous Space Word Representations , 2013, NAACL.

[58]  Laura E. Buffardi,et al.  Narcissism and implicit attention seeking: Evidence from linguistic analyses of social networking and online presentation , 2011 .

[59]  Saif Mohammad,et al.  CROWDSOURCING A WORD–EMOTION ASSOCIATION LEXICON , 2013, Comput. Intell..

[60]  Christopher J. Carpenter,et al.  Narcissism on Facebook: Self-promotional and anti-social behavior , 2012 .

[61]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[62]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[63]  Brendan T. O'Connor,et al.  A Latent Variable Model for Geographic Lexical Variation , 2010, EMNLP.

[64]  David Yarowsky,et al.  Exploring Demographic Language Variations to Improve Multilingual Sentiment Analysis in Social Media , 2013, EMNLP.

[65]  Xian-Sheng Hua,et al.  The role of attractiveness in web image search , 2011, ACM Multimedia.

[66]  Laura E. Buffardi,et al.  Narcissism and Social Networking Web Sites , 2008, Personality & social psychology bulletin.

[67]  Richard A. Harshman,et al.  Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..

[68]  Michael A. McDaniel,et al.  A meta-analysis of the Dark Triad and work behavior: a social exchange perspective. , 2012, The Journal of applied psychology.

[69]  Nikolaos Aletras,et al.  An analysis of the user occupational class through Twitter content , 2015, ACL.

[70]  Yan Ke,et al.  The Design of High-Level Features for Photo Quality Assessment , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[71]  P. Ekman An argument for basic emotions , 1992 .

[72]  Steven Skiena,et al.  Exact Age Prediction in Social Networks , 2015, WWW.

[73]  Tracii Ryan,et al.  Who uses Facebook? An investigation into the relationship between the Big Five, shyness, narcissism, loneliness, and Facebook usage , 2011, Comput. Hum. Behav..

[74]  Delroy L. Paulhus,et al.  The role of impulsivity in the Dark Triad of personality , 2011 .

[75]  Gregory D. Webster,et al.  The dirty dozen: a concise measure of the dark triad. , 2010, Psychological assessment.

[76]  James Ze Wang,et al.  Studying Aesthetics in Photographic Images Using a Computational Approach , 2006, ECCV.

[77]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[78]  Загоровская Ольга Владимировна,et al.  Исследование влияния пола и психологических характеристик автора на количественные параметры его текста с использованием программы Linguistic Inquiry and Word Count , 2015 .