Numerical detection and continuation of saddle-node homoclinic bifurcations of codimension one and two
暂无分享,去创建一个
[1] Björn Sandstede,et al. A numerical toolbox for homoclinic bifurcation analysis , 1996 .
[2] H. B. Keller,et al. NUMERICAL ANALYSIS AND CONTROL OF BIFURCATION PROBLEMS (II): BIFURCATION IN INFINITE DIMENSIONS , 1991 .
[3] Stephen Schecter,et al. Rate of convergence of numerical approximations to homoclinic bifurcation points , 1995 .
[4] Stephen Schecter,et al. Numerical computation of saddle-node homoclinic bifurcation points , 1993 .
[5] Freddy Dumortier,et al. Cubic Lienard equations with linear damping , 1990 .
[6] Alan R. Champneys,et al. A non-transverse homoclinic orbit to a saddle-node equilibrium , 1996 .
[7] E. Doedel,et al. On Locating Homoclinic and Heteroclinic Orbits , 1993 .
[8] Wolf-Jürgen Beyn. Global Bifurcations and their Numerical Computation , 1990 .
[9] M. Friedman. Numerical Analysis and Accurate Computation of Heteroclinic Orbits in the Case of , 1993 .
[10] Björn Sandstede,et al. Convergence estimates for the numerical approximation of homoclinic solutions , 1997 .
[11] Allan Jepsow,et al. The computation of paths of homoclinic orbits , 1994 .
[12] A. Bautin. On the nonlocal application of the method of small parameter: PMM vol. 41, n≗ 5, 1977, pp. 885–894 , 1977 .
[13] Mark J. Friedman,et al. Numerical analysis and accurate computation of heteroclinic orbits in the case of center manifolds , 1993 .
[14] Mark J. Friedman,et al. Numerical computation and continuation of invariant manifolds connecting fixed points , 1991 .
[15] Stephen Schecter,et al. The saddle-node separatrix-loop bifurcation , 1987 .
[16] Wolf-Jürgen Beyn,et al. The Numerical Computation of Connecting Orbits in Dynamical Systems , 1990 .
[17] S. Chow,et al. Bifurcation of a homoclinic orbit with a saddle-node equilibrium , 1990 .
[18] Homoclinic orbits in a simple chemical model of an autocatalytic reaction , 1988 .
[19] Wolf-Jürgen Beyn,et al. Numerical analysis of homoclinic orbits emanating from a Takens-Bogdanov point , 1994 .
[20] Yu. A. Kuznetsov,et al. NUMERICAL DETECTION AND CONTINUATION OF CODIMENSION-TWO HOMOCLINIC BIFURCATIONS , 1994 .
[21] P. Glendinning,et al. TRAVELLING WAVES WITH SPATIALLY RESONANT FORCING: BIFURCATIONS OF A MODIFIED LANDAU EQUATION , 1993 .
[22] A. Bautin. Qualitative investigation of a particular nonlinear system: PMM vol. 39, n≗ 4, 1975, pp. 633–641 , 1975 .
[23] B. Deng,et al. Homoclinic bifurcations with nonhyperbolic equilbria , 1990 .
[24] A. I. Khibnik,et al. LINLBF: A Program for Continuation and Bifurcation Analysis of Equilibria Up to Codimension Three , 1990 .
[25] Alan R. Champneys,et al. HomCont: An auto86 driver for homoclinic bifurcation analysis. Version 2.0 , 1995 .
[26] Mark J. Friedman,et al. Computational methods for global analysis of homoclinic and heteroclinic orbits: A case study , 1993 .