Numerical detection and continuation of saddle-node homoclinic bifurcations of codimension one and two

An extension of an existing truncated boundary-value method for the numerical continuation of connecting orbits is proposed to deal with homoclinic orbits to a saddle-node equilibrium. In contrast to previous numerical work by Schecter and Friedman and Doedel, the method is based on (linear) projection boundary conditions. These boundary conditions, with extra defining conditions for a saddle-node, allow the continuation of codimension-one curves of saddle-node homoclinic orbits. A new test function is motivated for detecting codimension-two points at which loci of saddle-nodes and homoclinic orbits become detached. Two methods for continuing such codim 2 points in three parameters are discussed. The numerical methods are applied to two example systems, modelling a DC Josephson junction and CO oxidation. For the former model, existing numerical results are recovered and extended; for the latter, new dynamical features are uncovered. All computations are performed using AUTO.

[1]  Björn Sandstede,et al.  A numerical toolbox for homoclinic bifurcation analysis , 1996 .

[2]  H. B. Keller,et al.  NUMERICAL ANALYSIS AND CONTROL OF BIFURCATION PROBLEMS (II): BIFURCATION IN INFINITE DIMENSIONS , 1991 .

[3]  Stephen Schecter,et al.  Rate of convergence of numerical approximations to homoclinic bifurcation points , 1995 .

[4]  Stephen Schecter,et al.  Numerical computation of saddle-node homoclinic bifurcation points , 1993 .

[5]  Freddy Dumortier,et al.  Cubic Lienard equations with linear damping , 1990 .

[6]  Alan R. Champneys,et al.  A non-transverse homoclinic orbit to a saddle-node equilibrium , 1996 .

[7]  E. Doedel,et al.  On Locating Homoclinic and Heteroclinic Orbits , 1993 .

[8]  Wolf-Jürgen Beyn Global Bifurcations and their Numerical Computation , 1990 .

[9]  M. Friedman Numerical Analysis and Accurate Computation of Heteroclinic Orbits in the Case of , 1993 .

[10]  Björn Sandstede,et al.  Convergence estimates for the numerical approximation of homoclinic solutions , 1997 .

[11]  Allan Jepsow,et al.  The computation of paths of homoclinic orbits , 1994 .

[12]  A. Bautin On the nonlocal application of the method of small parameter: PMM vol. 41, n≗ 5, 1977, pp. 885–894 , 1977 .

[13]  Mark J. Friedman,et al.  Numerical analysis and accurate computation of heteroclinic orbits in the case of center manifolds , 1993 .

[14]  Mark J. Friedman,et al.  Numerical computation and continuation of invariant manifolds connecting fixed points , 1991 .

[15]  Stephen Schecter,et al.  The saddle-node separatrix-loop bifurcation , 1987 .

[16]  Wolf-Jürgen Beyn,et al.  The Numerical Computation of Connecting Orbits in Dynamical Systems , 1990 .

[17]  S. Chow,et al.  Bifurcation of a homoclinic orbit with a saddle-node equilibrium , 1990 .

[18]  Homoclinic orbits in a simple chemical model of an autocatalytic reaction , 1988 .

[19]  Wolf-Jürgen Beyn,et al.  Numerical analysis of homoclinic orbits emanating from a Takens-Bogdanov point , 1994 .

[20]  Yu. A. Kuznetsov,et al.  NUMERICAL DETECTION AND CONTINUATION OF CODIMENSION-TWO HOMOCLINIC BIFURCATIONS , 1994 .

[21]  P. Glendinning,et al.  TRAVELLING WAVES WITH SPATIALLY RESONANT FORCING: BIFURCATIONS OF A MODIFIED LANDAU EQUATION , 1993 .

[22]  A. Bautin Qualitative investigation of a particular nonlinear system: PMM vol. 39, n≗ 4, 1975, pp. 633–641 , 1975 .

[23]  B. Deng,et al.  Homoclinic bifurcations with nonhyperbolic equilbria , 1990 .

[24]  A. I. Khibnik,et al.  LINLBF: A Program for Continuation and Bifurcation Analysis of Equilibria Up to Codimension Three , 1990 .

[25]  Alan R. Champneys,et al.  HomCont: An auto86 driver for homoclinic bifurcation analysis. Version 2.0 , 1995 .

[26]  Mark J. Friedman,et al.  Computational methods for global analysis of homoclinic and heteroclinic orbits: A case study , 1993 .