Improved Reconstruction of Global Precipitation since 1900

An improved land‐ocean global monthly precipitation anomaly reconstruction is developed for the period beginning in 1900. Reconstructions use the available historical data and statistics developed from the modern satellite-sampled period to analyze variations over the historical presatellite period. This paper documents the latest in a series of precipitation reconstructions developed by the authors. Although the reconstruction principleisstilltheminimizationofmean-squarederror,thislatestreconstructionincludesthefollowingthree major improvements over previous reconstructions: (i) an improvedmethod thatfirst produces an annualfirst guess, which is then adjusted using a monthly increment analysis; (ii) improved use of oceanic observations in the annual first guess using a canonical correlation analysis; and (iii) reinjection of gauge data where those data areavailable.Theseimprovements allowmoreconfidentanalysesandevaluationsofglobalprecipitation variations over the reconstruction period. Quantitative error estimates for the reconstruction are being developed and will be documented in a later paper.

[1]  B. Soden,et al.  Robust Responses of the Hydrological Cycle to Global Warming , 2006 .

[2]  Y. Hong,et al.  The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales , 2007 .

[3]  Mike Hulme,et al.  Precipitation sensitivity to global warming: Comparison of observations with HadCM2 simulations , 1998 .

[4]  K. Trenberth,et al.  Observations: Surface and Atmospheric Climate Change , 2007 .

[5]  Jeffrey S. Whitaker,et al.  Feasibility of a 100-Year Reanalysis Using Only Surface Pressure Data , 2006 .

[6]  S. Riser,et al.  Seasonal salt budget in the northeast Pacific Ocean , 2008 .

[7]  Lisan Yu,et al.  A global relationship between the ocean water cycle and near-surface salinity , 2011 .

[8]  M. New,et al.  On the reconstruction of seasonal oceanic precipitation in the presatellite era , 2005 .

[9]  A Canonical Ensemble Correlation Prediction Model for Seasonal Precipitation Anomaly , 2001 .

[10]  Steven J. Worley,et al.  COADS Release 2 data and metadata enhancements for improvements of marine surface flux fields , 1998 .

[11]  P. Xie,et al.  Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs , 1997 .

[12]  Prediction of sea surface temperature from the global historical climatology network data , 2004 .

[13]  James W. Hurrell,et al.  Decadal atmosphere-ocean variations in the Pacific , 1994 .

[14]  M. Yaremchuk Sea surface salinity constrains rainfall estimates over tropical oceans , 2006 .

[15]  Thomas M. Smith,et al.  An Improved Method for Analyzing Sparse and Irregularly Distributed SST Data on a Regular Grid: The Tropical Pacific Ocean , 1998 .

[16]  W. Landman Climate change 2007: the physical science basis , 2010 .

[17]  Thomas M. Smith,et al.  Reconstruction of near‐global annual precipitation using correlations with sea surface temperature and sea level pressure , 2009 .

[18]  Phillip A. Arkin,et al.  Global Monthly Precipitation Estimates from Satellite-Observed Outgoing Longwave Radiation , 1998 .

[19]  J. Janowiak,et al.  The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present) , 2003 .

[20]  S. Sorooshian,et al.  Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks , 1997 .

[21]  J. Janowiak,et al.  CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution , 2004 .

[22]  S. Wijffels,et al.  Ocean Salinities Reveal Strong Global Water Cycle Intensification During 1950 to 2000 , 2012, Science.

[23]  Samuel S. P. Shen,et al.  An Estimate of the Sampling Error Variance of the Gridded GHCN Monthly Surface Air Temperature Data , 2007 .

[24]  R. Allan,et al.  A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850-2004 , 2006 .

[25]  J. McCreary,et al.  River discharge into the Bay of Bengal in an inverse ocean model , 2005 .

[26]  Thomas M. Smith,et al.  Improvements to NOAA’s Historical Merged Land–Ocean Surface Temperature Analysis (1880–2006) , 2008 .

[27]  B. Soden,et al.  Atmospheric Warming and the Amplification of Precipitation Extremes , 2008, Science.

[28]  Historical reconstruction of monthly oceanic precipitation (1900–2006) , 2008 .

[29]  Thomas M. Smith,et al.  Reconstruction of Historical Sea Surface Temperatures Using Empirical Orthogonal Functions , 1996 .

[30]  J. Janowiak,et al.  The Global Precipitation Climatology Project (GPCP) combined precipitation dataset , 1997 .

[31]  Modes of multi‐decadal oceanic precipitation variations from a reconstruction and AR4 model output for the 20th century , 2009 .

[32]  T. Barnett,et al.  Origins and Levels of Monthly and Seasonal Forecast Skill for United States Surface Air Temperatures Determined by Canonical Correlation Analysis , 1987 .

[33]  T. Smith,et al.  Merged statistical analyses of historical monthly precipitation anomalies beginning 1900. , 2010 .

[34]  David T. Bolvin,et al.  Improving the global precipitation record: GPCP Version 2.1 , 2009 .

[35]  S. Sorooshian,et al.  Evaluation of PERSIANN system satellite-based estimates of tropical rainfall , 2000 .