Mixed-integer linear programming and constraint programming formulations for solving resource availability cost problems

Abstract We consider the resource availability cost problem and two extensions through general temporal constraints and calendar constraints. With general temporal constraints minimum and maximum time lags between the activities can be ensured. Calendar constraints are used to model breaks in the availability of a resource, e.g ., weekends or public holidays of resource types that equal staff. Especially if long-term and capital-intensive projects are under consideration, resource availability cost problems should be applied because in such projects it is more important to minimize the cost than, e.g ., the project duration. We present mixed-integer linear programming (MILP) formulations as well as constraint programming (CP) models for the three problems. In a performance study we compare the results of the MILP formulations solved by cplex and the CP models solved by the lazy clause generation solver chuffed on benchmark instances from literature and also introduce new benchmarks. Our CP models close all open instances for resource availability cost problems from the literature.

[1]  Julia Rieck,et al.  Mixed-integer linear programming for resource leveling problems , 2012, Eur. J. Oper. Res..

[2]  Klaus Neumann,et al.  Heuristic procedures for resource—constrained project scheduling with minimal and maximal time lags: the resource—levelling and minimum project—duration problems , 1996 .

[3]  Mario Vanhoucke,et al.  Heuristic Methods for the Resource Availability Cost Problem , 2015 .

[4]  M. Mongeau,et al.  Mixed-Integer Linear Programming Formulations , 2015 .

[5]  J. M. Tamarit,et al.  Project scheduling with resource constraints: A branch and bound approach , 1987 .

[6]  Erik Demeulemeester,et al.  Minimizing resource availability costs in time-limited project networks , 1995 .

[7]  Peter J. Stuckey,et al.  MiniZinc: Towards a Standard CP Modelling Language , 2007, CP.

[8]  Peter J. Stuckey,et al.  Propagation via lazy clause generation , 2009, Constraints.

[9]  Jürgen Zimmermann,et al.  TREE-BASED METHODS FOR RESOURCE INVESTMENT AND RESOURCE LEVELLING PROBLEMS , 2006 .

[10]  Bo Guo,et al.  Schedule generation scheme for solving multi-mode resource availability cost problem by modified particle swarm optimization , 2014, Journal of Scheduling.

[11]  Sharad Malik,et al.  Chaff: engineering an efficient SAT solver , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[12]  Mario Vanhoucke,et al.  An artificial immune system algorithm for the resource availability cost problem , 2011, Flexible Services and Manufacturing Journal.

[13]  Hartwig Nübel,et al.  Minimierung der Ressourcenkosten für Projekte mit planungsabhängigen Zeitfenstern , 1999 .

[14]  Rainer Kolisch,et al.  Benchmark instances for project scheduling problems , 1999 .

[15]  Klaus Neumann,et al.  Procedures for resource leveling and net present value problems in project scheduling with general temporal and resource constraints , 2000, Eur. J. Oper. Res..

[16]  Ji Zhan,et al.  Calendarization of time planning in MPM networks , 1992, ZOR Methods Model. Oper. Res..

[17]  Alf Kimms,et al.  Optimization guided lower and upper bounds for the resource investment problem , 2001, J. Oper. Res. Soc..

[18]  Behrouz Afshar-Nadjafi,et al.  Multi-mode resource availability cost problem with recruitment and release dates for resources , 2014 .

[19]  Vinícius Amaral Armentano,et al.  Robust optimization models for project scheduling with resource availability cost , 2007, J. Sched..

[20]  Peter J. Stuckey,et al.  Explaining Time-Table-Edge-Finding Propagation for the Cumulative Resource Constraint , 2012, CPAIOR.

[21]  K. Neumann,et al.  Methods for Resource-Constrained Project Scheduling with Regular and Nonregular Objective Functions and Schedule-Dependent Time Windows , 1999 .

[22]  Robert Klein,et al.  Scheduling of Resource-Constrained Projects , 1999 .

[23]  Ravindra K. Ahuja,et al.  Network Flows , 2011 .

[24]  Savio B. Rodrigues,et al.  Exact Methods for the Resource Availability Cost Problem , 2015 .

[25]  Behrouz Afshar Nadjafi,et al.  USING GRASP FOR RESOURCE AVAILABILITY COST PROBLEM WITH TIME DEPENDENT RESOURCE COST , 2014 .

[26]  Geoffrey Chu,et al.  Improving combinatorial optimization , 2011 .

[27]  Peter J. Stuckey,et al.  Modeling and Solving Project Scheduling with Calendars , 2015, CP.

[28]  Peter J. Stuckey,et al.  Solving RCPSP/max by lazy clause generation , 2012, Journal of Scheduling.

[29]  Shahram Shadrokh,et al.  A genetic algorithm for resource investment project scheduling problem, tardiness permitted with penalty , 2007, Eur. J. Oper. Res..

[30]  Rolf H. Möhring,et al.  Minimizing Costs of Resource Requirements in Project Networks Subject to a Fixed Completion Time , 1984, Oper. Res..

[31]  Shahram Shadrokh,et al.  Solving the resource availability cost problem in project scheduling by path relinking and genetic algorithm , 2008, Appl. Math. Comput..

[32]  David Zuckerman,et al.  Optimal speedup of Las Vegas algorithms , 1993, [1993] The 2nd Israel Symposium on Theory and Computing Systems.

[33]  Rolf H. Möhring,et al.  Scheduling project networks with resource constraints and time windows , 1988 .

[34]  Rainer Kolisch,et al.  PSPLIB - A project scheduling problem library: OR Software - ORSEP Operations Research Software Exchange Program , 1997 .

[35]  Mark M. Klein,et al.  Scheduling project networks , 1967, CACM.

[36]  Rainer Kolisch,et al.  PSPLIB - a project scheduling problem library , 1996 .

[37]  Klaus Neumann,et al.  Project scheduling with calendars , 2001, OR Spectr..

[38]  Philippe Baptiste,et al.  Constraint-based scheduling , 2001 .

[39]  A. Alan B. Pritsker,et al.  Multiproject Scheduling with Limited Resources , 1968 .

[40]  Klaus Neumann,et al.  Order-based neighborhoods for project scheduling with nonregular objective functions , 2003, Eur. J. Oper. Res..

[41]  D. S. Kim,et al.  A new heuristic for the multi-mode resource investment problem , 2005, J. Oper. Res. Soc..

[42]  Klaus Neumann,et al.  Resource levelling for projects with schedule-dependent time windows , 1999, Eur. J. Oper. Res..

[43]  Peter J. Stuckey,et al.  Using constraint programming for solving RCPSP/max-cal , 2017, Constraints.

[44]  Klaus Neumann,et al.  Active and stable project scheduling , 2000, Math. Methods Oper. Res..

[45]  Professor Dr. Klaus Neumann,et al.  Project Scheduling with Time Windows and Scarce Resources , 2003, Springer Berlin Heidelberg.

[46]  Julia Rieck,et al.  Models and solution procedures for the resource-constrained project scheduling problem with general temporal constraints and calendars , 2016, Eur. J. Oper. Res..

[47]  Marco E. Lübbecke,et al.  Discrete Optimization A branch-price-and-cut algorithm for multi-mode resource leveling ✩ , 2015 .

[48]  Bo Guo,et al.  Solving resource availability cost problem in project scheduling by pseudo particle swarm optimization , 2014 .

[49]  Peter J. Stuckey,et al.  Explaining the cumulative propagator , 2010, Constraints.

[50]  Sávio B. Rodrigues,et al.  An exact algorithm for minimizing resource availability costs in project scheduling , 2010, Eur. J. Oper. Res..

[51]  Andreas Schutt,et al.  Improving scheduling by learning , 2011 .