The numerical integration of relative equilibrium solutions. The nonlinear Schrödinger equation

We analyse different error propagation mechanisms for conservative and nonconservative time-integrators of nonlinear Schrodinger equations. We use a geometric approach based on interpreting waves as relative equilibria.

[1]  V. Zakharov Collapse of Langmuir Waves , 1972 .

[2]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[3]  J. M. Sanz-Serna,et al.  Methods for the numerical solution of the nonlinear Schroedinger equation , 1984 .

[4]  J. Ginibre,et al.  The global Cauchy problem for the nonlinear Schrodinger equation revisited , 1985 .

[5]  Michael I. Weinstein,et al.  Modulational Stability of Ground States of Nonlinear Schrödinger Equations , 1985 .

[6]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[7]  M. J. D. Powell,et al.  on The state of the art in numerical analysis , 1987 .

[8]  T. Itoh,et al.  Hamiltonian-conserving discrete canonical equations based on variational difference quotients , 1988 .

[9]  Paul H. Rabinowitz,et al.  On a class of nonlinear Schrödinger equations , 1992 .

[10]  Mari Paz Calvo,et al.  The Development of Variable-Step Symplectic Integrators, with Application to the Two-Body Problem , 1993, SIAM J. Sci. Comput..

[11]  G. Fairweather,et al.  On the numerical solution of the cubic Schro¨dinger equation in one space variable , 1993 .

[12]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[13]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[14]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[15]  E. Hairer,et al.  Accurate long-term integration of dynamical systems , 1995 .

[16]  Donald Estep,et al.  The rate of error growth in Hamiltonian-conserving integrators , 1995 .

[17]  B. Cano,et al.  Error Growth in the Numerical Integration of Periodic Orbits, with Application to Hamiltonian and Reversible Systems , 1997 .

[18]  J. Sanz-Serna,et al.  Accuracy and conservation properties in numerical integration: the case of the Korteweg-de Vries equation , 1997 .

[19]  Ernst Hairer,et al.  The life-span of backward error analysis for numerical integrators , 1997 .

[20]  B. Cano,et al.  Error growth in the numerical integration of periodic orbits by multistep methods, with application to reversible systems , 1998 .

[21]  Jean Bourgain,et al.  On nonlinear Schrödinger equations , 1998 .

[22]  A. Durán,et al.  The numerical integration of relative equilibrium solutions. Geometric theory , 1998 .

[23]  Integración numérica de la ecuación no lineal de Schroedinger , 1998 .

[24]  M. A. López-Marcos,et al.  Variable step implementation of geometric integrators , 1998 .