Multiphase thermomechanics with interfacial structure 1. Heat conduction and the capillary balance law

[1]  Kenneth A. Brakke,et al.  The motion of a surface by its mean curvature , 2015 .

[2]  C. Truesdell,et al.  The Non-Linear Field Theories Of Mechanics , 1992 .

[3]  Morton E. Gurtin,et al.  Multiphase thermomechanics with interfacial structure , 1990 .

[4]  R. Sekerka,et al.  The effect of elastic fields on the morphological stability of a precipitate grown from solid solution , 1989 .

[5]  Sigurd B. Angenent,et al.  Multiphase thermomechanics with interfacial structure 2. Evolution of an isothermal interface , 1989 .

[6]  Irene Fonseca,et al.  Interfacial energy and the Maxwell rule , 1989 .

[7]  M. Gurtin Toward a nonequilibrium thermodynamics of two-phase materials , 1988 .

[8]  J. Iwan D. Alexander,et al.  Interfacial conditions for thermomechanical equilibrium in two‐phase crystals , 1986 .

[9]  Morton E. Gurtin,et al.  On the two-phase Stefan problem with interfacial energy and entropy , 1985 .

[10]  J. Iwan D. Alexander,et al.  Thermomechanical equilibrium in solid‐fluid systems with curved interfaces , 1985 .

[11]  W. O. Williams,et al.  A generalized stefan condition , 1979 .

[12]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[13]  A. I. Murdoch,et al.  A THERMODYNAMICAL THEORY OF ELASTIC MATERIAL INTERFACES , 1976 .

[14]  西永 頌 Morphological stability, R. F. Sekerka, J. Crystal Growth, 3, 4, 71-81(1968) , 1976 .

[15]  Morton E. Gurtin,et al.  A continuum theory of elastic material surfaces , 1975 .

[16]  G. P. Moeckel,et al.  Thermodynamics of an interface , 1975 .

[17]  北村 雅夫,et al.  Crystal growth forms and their kinetic stability A. A. Chernov, Kristallografia, 8, No.1, 87-93. (Sov. Phys.-Cryst. Vol. 8, 63-67, (1963) : Berg効果 , 1975 .

[18]  A. Chernov Stability of faceted shapes , 1974 .

[19]  D. W. Hoffman,et al.  A Vector Thermodynamics for Anisotropic Surfaces—II. Curved and Faceted Surfaces , 1974 .

[20]  D. W. Hoffman,et al.  A vector thermodynamics for anisotropic surfaces: I. Fundamentals and application to plane surface junctions , 1972 .

[21]  D. W. Hoffman,et al.  A Vector Thermodynamics for Anisotropic Surfaces , 1972 .

[22]  W. Mullins Stability of a Planar Interface During Solidification of a Dilute Binary Alloy , 1964 .

[23]  Bernard D. Coleman,et al.  Thermodynamics and departures from Fourier's law of heat conduction , 1963 .

[24]  Walter Noll,et al.  The thermodynamics of elastic materials with heat conduction and viscosity , 1963 .

[25]  D. Kinderlehrer,et al.  Morphological Stability of a Particle Growing by Diffusion or Heat Flow , 1963 .

[26]  J. Ericksen Conservation Laws for Liquid Crystals , 1961 .

[27]  L. Scriven,et al.  Dynamics of a fluid interface Equation of motion for Newtonian surface fluids , 1960 .

[28]  神前 熈,et al.  R. H. Doremus, B. M. Roberts and David Turnbull: Growth and Perfection of Crystals, John Wiley and Sons, New York 1958, 609頁, 22×29cm, 5000円. , 1959 .

[29]  J. Vance,et al.  Growth and Perfection of Crystals. , 1959 .

[30]  Thomas A. Read,et al.  Physics of Powder Metallurgy , 1949 .

[31]  M. Grayson The heat equation shrinks embedded plane curves to round points , 1987 .

[32]  M. Gage,et al.  The heat equation shrinking convex plane curves , 1986 .

[33]  R. F. Sekerha MORPHOLOGICAL INSTABILITIES DURING PHASE TRANSFORMATIONS , 1984 .

[34]  J. Langer Instabilities and pattern formation in crystal growth , 1980 .

[35]  D. W. Hoffman,et al.  A vector thermodynamics for anisotropic surfaces II. Curved and faceted surfaces , 1974 .

[36]  R. Sekerka,et al.  Morphological stability near a grain boundary groove in a solid-liquid interface during solidification of a pure substance , 1973 .

[37]  F. C. Frank,et al.  On the Kinematic Theory of Crystal Growth and Dissolution Processes, II , 1972 .