Scaling function, anisotropy and the size of RVE in elastic random polycrystals

This article is focused on the identification of the size of the representative volume element (RVE) in linear elastic randomly structured polycrystals made up of cubic single crystals. The RVE is approached by setting up stochastic Dirichlet and Neumann boundary value problems consistent with the Hill(-Mandel) macrohomogeneity condition. Within this framework we introduce a scaling function that relates the single crystal anisotropy to the scale of observation. We derive certain exact characteristics of the scaling function and postulate others based on detailed calculations on copper, lithium, tantalum, magnesium oxide and antimony-yttrium. In deriving the above, we make use of the fact that cubic crystals and polycrystals have a uniquely determined scale-independent bulk modulus. It turns out that the scaling function is exact in the single crystal anisotropy. A methodology to develop a material selection diagram that clearly separates the microscale from the macroscale is proposed. The proposed scaling function not only bridges the length scales but also unifies the treatment of a wide spectrum of cubic crystals. Although the scope of this article is restricted to aggregates made up of cubic-shaped and cubic-symmetry single crystals, the concept of the scaling function can be generalized to other crystal shapes and classes as well as to scaling of other elastic/inelastic properties.

[1]  Martin Ostoja-Starzewski,et al.  Microstructural Randomness and Scaling in Mechanics of Materials , 2007 .

[2]  M. Ostoja-Starzewski,et al.  Microstructural disorder, mesoscale finite elements and macroscopic response , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[3]  S. Kurtz,et al.  Micro-stress distribution within polycrystalline aggregate , 1996 .

[4]  D. Chung,et al.  The Elastic Anisotropy of Crystals , 1967 .

[5]  M. Ostoja-Starzewski,et al.  On the size of representative volume element for Darcy law in random media , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  M. Ostoja-Starzewski,et al.  Mesoscale conductivity and scaling function in aggregates of cubic, trigonal, hexagonal, and tetragonal crystals , 2008 .

[7]  Kaushik Bhattacharya,et al.  A model problem concerning recoverable strains of shape-memory polycrystals , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  R. Hill The mathematical theory of plasticity , 1950 .

[9]  Rodney Hill,et al.  The essential structure of constitutive laws for metal composites and polycrystals , 1967 .

[10]  E. Sanchez-Palencia,et al.  Homogenization Techniques for Composite Media , 1987 .

[11]  Christian Huet,et al.  Application of variational concepts to size effects in elastic heterogeneous bodies , 1990 .

[12]  D. Jeulin,et al.  Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .

[13]  K. Bowman Mechanical Behavior of Materials , 2003 .

[14]  K. Mendelson Bulk modulus of a polycrystal , 1981 .

[15]  Adam Morawiec,et al.  Orientations and Rotations: Computations in Crystallographic Textures , 1999 .

[16]  M. Ostoja-Starzewski Universal material property in conductivity of planar random microstructures , 2000 .

[17]  T. Ting Can a Linear Anisotropic Elastic Material Have a Uniform Contraction under a Uniform Pressure? , 2001 .

[18]  David B. Kirk,et al.  Graphics Gems III , 1992 .

[19]  Ken Shoemake,et al.  Uniform Random Rotations , 1992, Graphics Gems III.

[20]  N. Padial,et al.  A Calculation of the Debye Characteristic Temperature of Cubic Crystals , 1973 .

[21]  K. Sab On the homogenization and the simulation of random materials , 1992 .

[22]  J. Mandel,et al.  Contribution théorique à l’étude de l’écrouissage et des lois de l’écoulement plastique , 1966 .

[23]  M. Ostoja-Starzewski,et al.  Scale-dependent homogenization of inelastic random polycrystals , 2008 .

[24]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[25]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[26]  W. Voigt,et al.  Lehrbuch der Kristallphysik , 1966 .

[27]  On the bounds of the shear modulus of macroscopically isotropic aggregates of cubic crystals , 1966 .

[28]  C. Zener Elasticity and anelasticity of metals , 1948 .

[29]  Dominique Jeulin,et al.  On the Size of the Representative Volume Element for Isotropic Elastic Polycrystalline Copper , 2007 .

[30]  Wei Li,et al.  Comparisons of the size of the representative volume element in elastic, plastic, thermoelastic, and permeable random microstructures , 2007 .

[31]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[32]  G. Grimvall Thermophysical properties of materials , 1986 .