Scaling function, anisotropy and the size of RVE in elastic random polycrystals
暂无分享,去创建一个
[1] Martin Ostoja-Starzewski,et al. Microstructural Randomness and Scaling in Mechanics of Materials , 2007 .
[2] M. Ostoja-Starzewski,et al. Microstructural disorder, mesoscale finite elements and macroscopic response , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[3] S. Kurtz,et al. Micro-stress distribution within polycrystalline aggregate , 1996 .
[4] D. Chung,et al. The Elastic Anisotropy of Crystals , 1967 .
[5] M. Ostoja-Starzewski,et al. On the size of representative volume element for Darcy law in random media , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[6] M. Ostoja-Starzewski,et al. Mesoscale conductivity and scaling function in aggregates of cubic, trigonal, hexagonal, and tetragonal crystals , 2008 .
[7] Kaushik Bhattacharya,et al. A model problem concerning recoverable strains of shape-memory polycrystals , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[8] R. Hill. The mathematical theory of plasticity , 1950 .
[9] Rodney Hill,et al. The essential structure of constitutive laws for metal composites and polycrystals , 1967 .
[10] E. Sanchez-Palencia,et al. Homogenization Techniques for Composite Media , 1987 .
[11] Christian Huet,et al. Application of variational concepts to size effects in elastic heterogeneous bodies , 1990 .
[12] D. Jeulin,et al. Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .
[13] K. Bowman. Mechanical Behavior of Materials , 2003 .
[14] K. Mendelson. Bulk modulus of a polycrystal , 1981 .
[15] Adam Morawiec,et al. Orientations and Rotations: Computations in Crystallographic Textures , 1999 .
[16] M. Ostoja-Starzewski. Universal material property in conductivity of planar random microstructures , 2000 .
[17] T. Ting. Can a Linear Anisotropic Elastic Material Have a Uniform Contraction under a Uniform Pressure? , 2001 .
[18] David B. Kirk,et al. Graphics Gems III , 1992 .
[19] Ken Shoemake,et al. Uniform Random Rotations , 1992, Graphics Gems III.
[20] N. Padial,et al. A Calculation of the Debye Characteristic Temperature of Cubic Crystals , 1973 .
[21] K. Sab. On the homogenization and the simulation of random materials , 1992 .
[22] J. Mandel,et al. Contribution théorique à l’étude de l’écrouissage et des lois de l’écoulement plastique , 1966 .
[23] M. Ostoja-Starzewski,et al. Scale-dependent homogenization of inelastic random polycrystals , 2008 .
[24] R. Hill. Elastic properties of reinforced solids: some theoretical principles , 1963 .
[25] A. Reuss,et al. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .
[26] W. Voigt,et al. Lehrbuch der Kristallphysik , 1966 .
[27] On the bounds of the shear modulus of macroscopically isotropic aggregates of cubic crystals , 1966 .
[28] C. Zener. Elasticity and anelasticity of metals , 1948 .
[29] Dominique Jeulin,et al. On the Size of the Representative Volume Element for Isotropic Elastic Polycrystalline Copper , 2007 .
[30] Wei Li,et al. Comparisons of the size of the representative volume element in elastic, plastic, thermoelastic, and permeable random microstructures , 2007 .
[31] R. Hill. The Elastic Behaviour of a Crystalline Aggregate , 1952 .
[32] G. Grimvall. Thermophysical properties of materials , 1986 .