Light fermions in quantum gravity

We study the impact of quantum gravity, formulated as a quantum field theory of the metric, on chiral symmetry in a fermionic matter sector. Specifically we address the question of whether metric fluctuations can induce chiral symmetry breaking and bound state formation. Our results based on the functional renormalization group indicate that chiral symmetry is left intact even at strong gravitational coupling. In particular, we found that asymptotically safe quantum gravity where the gravitational couplings approach a non-Gausian fixed point generically admits universes with light fermions. Our results thus further support quantum gravity theories built on fluctuations of the metric field such as the asymptotic-safety scenario. A study of chiral symmetry breaking through gravitational quantum effects may also serve as a significant benchmark test for other quantum gravity scenarios, since a completely broken chiral symmetry at the Planck scale would not be in accordance with the observation of light fermions in our universe. We demonstrate that this elementary observation already imposes constraints on a generic UV completion of gravity.

[1]  G. P. Vacca,et al.  Asymptotic safety, emergence and minimal length , 2010, 1008.3621.

[2]  M. Reuter,et al.  Is quantum Einstein gravity nonperturbatively renormalizable , 2002 .

[3]  D. Prowe Berlin , 1855, Journal of public health, and sanitary review.

[4]  F. Saueressig,et al.  A Class of nonlocal truncations in quantum Einstein gravity and its renormalization group behavior , 2002 .

[5]  O. Zanusso,et al.  Asymptotic safety in Einstein gravity and scalar-fermion matter. , 2010, Physical review letters.

[6]  Fixed points of quantum gravity in extra dimensions , 2006, hep-th/0602203.

[7]  Holger Gies,et al.  UV fixed-point structure of the three-dimensional Thirring model , 2010, 1006.3747.

[8]  Martin Reuter,et al.  Nonperturbative evolution equation for quantum gravity , 1998 .

[9]  Wataru Souma,et al.  Non-Trivial Ultraviolet Fixed Point in Quantum Gravity , 1999, hep-th/9907027.

[10]  Mikhail Shaposhnikov,et al.  Asymptotic safety of gravity and the Higgs-boson mass , 2009, 0912.0208.

[11]  Roberto Percacci,et al.  The running gravitational couplings , 1998 .

[12]  Frank Saueressig,et al.  On the Renormalization Group Flow of Gravity , 2007, 0712.0445.

[13]  Appelquist,et al.  Zero Temperature Chiral Phase Transition in SU(N) Gauge Theories. , 1996, Physical review letters.

[14]  K. Yamawaki,et al.  Erratum: Conformal phase transition in gauge theories [Phys. Rev. D55, 5051 (1997)] , 1997 .

[15]  Martin Reuter,et al.  Conformal sector of quantum Einstein gravity in the local potential approximation: Non-Gaussian fixed point and a phase of unbroken diffeomorphism invariance , 2008, 0804.1475.

[16]  D. Raine General relativity , 1980, Nature.

[17]  C. Wetterich,et al.  Exact evolution equation for the effective potential , 1993, 1710.05815.

[18]  Astrid Eichhorn,et al.  Ghost anomalous dimension in asymptotically safe quantum gravity , 2010, 1001.5033.

[19]  L. Zambelli,et al.  Gravitational corrections to Yukawa systems , 2009, 0904.0938.

[20]  Martin Reuter,et al.  Background Independence and Asymptotic Safety in Conformally Reduced Gravity , 2008, 0801.3287.

[21]  M. Niedermaier,et al.  The Asymptotic Safety Scenario in Quantum Gravity , 2006, Living reviews in relativity.

[22]  Max Niedermaier,et al.  Gravitational fixed points and asymptotic safety from perturbation theory , 2010 .

[23]  R. Percacci,et al.  One-loop beta functions in topologically massive gravity , 2010, 1002.2640.

[24]  Roberto Percacci,et al.  Fixed points of higher-derivative gravity. , 2006, Physical review letters.

[25]  L. F. Abbott,et al.  The Background Field Method Beyond One Loop , 1981 .

[26]  R. Pisarski Chiral-symmetry breaking in three-dimensional electrodynamics , 1984 .

[27]  J. Pawlowski,et al.  Phase structure of two-flavor QCD at finite chemical potential. , 2011, Physical Review Letters.

[28]  N. Mavromatos,et al.  LECT NOTES PHYS , 2002 .

[29]  C. Wetterich,et al.  Non-perturbative renormalization flow in quantum field theory and statistical physics , 2002 .

[30]  H. Gies,et al.  Towards a renormalizable standard model without a fundamental Higgs scalar , 2003, hep-ph/0312034.

[31]  K. Yamawaki,et al.  ON GAUGE THEORIES WITH ADDITIONAL FOUR-FERMION INTERACTION , 1989 .

[32]  P. Nieuwenhuizen Classical gauge fixing in quantum field theory , 1981 .

[33]  D. Litim Fixed points of quantum gravity , 2003, hep-th/0312114.

[34]  A. Wipf,et al.  Generalized Thirring Models , 1995 .

[35]  K. Yamawaki,et al.  Conformal phase transition in gauge theories , 1997 .

[36]  M. Reuter,et al.  Quantum Einstein gravity: Towards an asymptotically safe field theory of gravity , 2007 .

[37]  Jan M. Pawlowski Aspects of the functional renormalisation group , 2007 .

[38]  R. Woodard The Vierbein Is Irrelevant in Perturbation Theory , 1984 .

[39]  M. Duff,et al.  Quantum gravity in 2 + ε dimensions , 1978 .

[40]  M. Reuter,et al.  Flow equation of quantum Einstein gravity in a higher derivative truncation , 2002 .

[41]  M. Reuter,et al.  Ultraviolet fixed point and generalized flow equation of quantum gravity , 2001 .

[42]  F. Saueressig,et al.  Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation , 2002 .

[43]  Christoph Rahmede,et al.  Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation , 2008, 0805.2909.

[44]  Christoph Rahmede,et al.  ULTRAVIOLET PROPERTIES OF f(R)-GRAVITY , 2007, 0705.1769.

[45]  Herbert W. Hamber,et al.  Quantum Gravitation: The Feynman Path Integral Approach , 2008 .

[46]  Frank Saueressig,et al.  ASYMPTOTIC SAFETY IN HIGHER-DERIVATIVE GRAVITY , 2009, 0901.2984.

[47]  Janos Polonyi,et al.  Lectures on the functional renormalization group method , 2001, hep-th/0110026.

[48]  L. Smolin A fixed point for quantum gravity , 1982 .

[49]  Carlo Rovelli,et al.  Loop Quantum Gravity , 2003, Living reviews in relativity.

[50]  H. Gies,et al.  Asymptotically free scalar curvature-ghost coupling in quantum Einstein gravity , 2009, 0907.1828.

[51]  R. Percacci,et al.  Asymptotic safety of gravity coupled to matter , 2003, hep-th/0304222.

[52]  T. Banks,et al.  On the phase structure of vector-like gauge theories with massless fermions , 1982 .

[53]  Raymond Gastmans,et al.  Quantum gravity near two dimensions , 1978 .

[54]  Geyer,et al.  Chiral symmetry breaking in the gauged NJL model in curved spacetime. , 1996, Physical review. D, Particles and fields.