Towards large-scale quantum optimization solvers with few qubits

We introduce a variational quantum solver for combinatorial optimizations over $m=\mathcal{O}(n^k)$ binary variables using only $n$ qubits, with tunable $k>1$. The number of parameters and circuit depth display mild linear and sublinear scalings in $m$, respectively. Moreover, we analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature. This leads to unprecedented quantum-solver performances. For $m=7000$, numerical simulations produce solutions competitive in quality with state-of-the-art classical solvers. In turn, for $m=2000$, an experiment with $n=17$ trapped-ion qubits featured MaxCut approximation ratios estimated to be beyond the hardness threshold $0.941$. To our knowledge, this is the highest quality attained experimentally on such sizes. Our findings offer a novel heuristics for quantum-inspired solvers as well as a promising route towards solving commercially-relevant problems on near term quantum devices.

[1]  Supanut Thanasilp,et al.  Does provable absence of barren plateaus imply classical simulability? Or, why we need to rethink variational quantum computing , 2023, ArXiv.

[2]  G. Cortiana,et al.  Quantum Optimization: Potential, Challenges, and the Path Forward , 2023, 2312.02279.

[3]  B. Bakalov,et al.  A Unified Theory of Barren Plateaus for Deep Parametrized Quantum Circuits , 2023, 2309.09342.

[4]  Shouvanik Chakrabarti,et al.  Characterizing barren plateaus in quantum ansätze with the adjoint representation , 2023, Nature communications.

[5]  A. Makmal,et al.  A Variational Qubit-Efficient MaxCut Heuristic Algorithm , 2023, 2308.10383.

[6]  D. Angelakis,et al.  Exponential Qubit Reduction in Optimization for Financial Transaction Settlement , 2023, 2307.07193.

[7]  D. Angelakis,et al.  Qubit efficient quantum algorithms for the vehicle routing problem on NISQ processors , 2023, 2306.08507.

[8]  C. Mansell,et al.  NISQ-compatible approximate quantum algorithm for unconstrained and constrained discrete optimization , 2023, Quantum.

[9]  Diego Garc'ia-Mart'in,et al.  Deep quantum neural networks form Gaussian processes , 2023, ArXiv.

[10]  Martin Larocca,et al.  Effects of noise on the overparametrization of quantum neural networks , 2023, Physical Review Research.

[11]  J. McClean,et al.  Quantum error mitigation , 2022, Reviews of Modern Physics.

[12]  Eric R. Anschuetz,et al.  Quantum variational algorithms are swamped with traps , 2022, Nature communications.

[13]  S. Carrazza,et al.  Quantum simulation with just-in-time compilation , 2022, Quantum.

[14]  M. Lukin,et al.  Quantum optimization of maximum independent set using Rydberg atom arrays , 2022, Science.

[15]  Anima Anandkumar,et al.  TensorLy-Quantum: Quantum Machine Learning with Tensor Methods , 2021, 2112.10239.

[16]  Thomas Bäck,et al.  Quantum annealing for industry applications: introduction and review , 2021, Reports on progress in physics. Physical Society.

[17]  Toshinari Itoko,et al.  Approximate Solutions of Combinatorial Problems via Quantum Relaxations , 2021, IEEE Transactions on Quantum Engineering.

[18]  Anima Anandkumar,et al.  Variational Quantum Optimization with Multi-Basis Encodings , 2021, Physical Review Research.

[19]  A. Aspuru‐Guzik,et al.  Polynomial unconstrained binary optimisation inspired by optical simulation , 2021, 2106.13167.

[20]  P. Love,et al.  MaxCut quantum approximate optimization algorithm performance guarantees for p>1 , 2021 .

[21]  Patrick J. Coles,et al.  Equivalence of quantum barren plateaus to cost concentration and narrow gorges , 2021, Quantum Science and Technology.

[22]  J. Biamonte,et al.  Parameter concentrations in quantum approximate optimization , 2021, Physical Review A.

[23]  Patrick J. Coles,et al.  Cost function dependent barren plateaus in shallow parametrized quantum circuits , 2021, Nature Communications.

[24]  M. Kliesch,et al.  Training Variational Quantum Algorithms Is NP-Hard. , 2021, Physical review letters.

[25]  M. Cerezo,et al.  Variational quantum algorithms , 2020, Nature Reviews Physics.

[26]  Hartmut Neven,et al.  Focus beyond Quadratic Speedups for Error-Corrected Quantum Advantage , 2020, PRX Quantum.

[27]  Raul Garcia-Patron,et al.  Limitations of optimization algorithms on noisy quantum devices , 2020, Nature Physics.

[28]  Stefano Carrazza,et al.  Qibo: a framework for quantum simulation with hardware acceleration , 2020, Quantum Science and Technology.

[29]  Patrick J. Coles,et al.  Noise-induced barren plateaus in variational quantum algorithms , 2020, Nature Communications.

[30]  Jirawat Tangpanitanon,et al.  Qubit-efficient encoding schemes for binary optimisation problems , 2020, Quantum.

[31]  D. Bacon,et al.  Quantum approximate optimization of non-planar graph problems on a planar superconducting processor , 2020, Nature Physics.

[32]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[33]  V. Akshay,et al.  Reachability Deficits in Quantum Approximate Optimization , 2019, Physical review letters.

[34]  Ashley Montanaro,et al.  Quantum speedup of branch-and-bound algorithms , 2019, Physical Review Research.

[35]  C. Monroe,et al.  Quantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulator , 2019, Proceedings of the National Academy of Sciences.

[36]  Gian Giacomo Guerreschi,et al.  QAOA for Max-Cut requires hundreds of qubits for quantum speed-up , 2018, Scientific Reports.

[37]  Ashley Montanaro,et al.  Applying quantum algorithms to constraint satisfaction problems , 2018, Quantum.

[38]  Iain Dunning,et al.  What Works Best When? A Systematic Evaluation of Heuristics for Max-Cut and QUBO , 2018, INFORMS J. Comput..

[39]  Ryan Babbush,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[40]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[41]  Kristan Temme,et al.  Error Mitigation for Short-Depth Quantum Circuits. , 2016, Physical review letters.

[42]  Ying Li,et al.  Efficient Variational Quantum Simulator Incorporating Active Error Minimization , 2016, 1611.09301.

[43]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[44]  J. Biamonte Non−perturbative k−body to two−body commuting conversion Hamiltonians and embedding problem instances into Ising spins , 2008, 0801.3800.

[45]  A. Ambainis Quantum search algorithms , 2004, SIGA.

[46]  Renato D. C. Monteiro,et al.  A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization , 2003, Math. Program..

[47]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[48]  Zsolt Tuza,et al.  Maximum cuts: Improvements and local algorithmic analogues of the Edwards-Erdös inequality , 1999, Discret. Math..

[49]  Luca Trevisan,et al.  Gadgets, approximation, and linear programming , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[50]  Christoph Dürr,et al.  A Quantum Algorithm for Finding the Minimum , 1996, ArXiv.

[51]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[52]  Boulevard Lavoisier,et al.  Breakout Local Search for the Max-Cut Problem , 2014 .

[53]  Yinyu Ye,et al.  Solving Sparse Semidefinite Programs Using the Dual Scaling Algorithm with an Iterative Solver , 2000 .

[54]  Svatopluk Poljak,et al.  A polynomial time heuristic for certain subgraph optimization problems with guaranteed worst case bound , 1986, Discret. Math..

[55]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.