Digital Control Strategies for Active Vibration Control—The Bases

This chapter reviews basic digital control strategies and their application to active vibration control. The design of polynomial controllers (RS controllers) is discussed both from performance and robustness perspectives. The importance of sensitivity functions is enhanced. A number of basic concepts are defined and explained. A real-time example of an active vibration control (suppression of a tonal vibration) illustrates the design methodology presented in this chapter.

[1]  Ioan Doré Landau,et al.  Combined pole placement/sensitivity function shaping method using convex optimization criteria , 1997, 1997 European Control Conference (ECC).

[2]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[3]  Jochen Langer Synthèse de régulateurs numériques robustes : application aux structures souples , 1998 .

[4]  Masayoshi Tomizuka,et al.  Pseudo Youla-Kucera parameterization with control of the waterbed effect for local loop shaping , 2015, Autom..

[5]  Ioan Doré Landau,et al.  Adaptive regulation—Rejection of unknown multiple narrow band disturbances (a review on algorithms and applications) , 2011 .

[6]  Karl Johan Åström,et al.  Computer-Controlled Systems: Theory and Design , 1984 .

[7]  Alain Oustaloup,et al.  The CRONE Control of Resonant Plants: Application to a Flexible Transmission , 1995, Eur. J. Control.

[8]  Bruce A. Francis,et al.  Feedback Control Theory , 1992 .

[9]  Marko Bacic,et al.  Model predictive control , 2003 .

[10]  J. Doyle,et al.  Essentials of Robust Control , 1997 .

[11]  Ioan Doré Landau,et al.  Adaptive narrow band disturbance rejection applied to an active suspension - an internal model principle approach , 2005, Autom..

[12]  Thierry Poinot,et al.  Restricted-Complexity Controller with Crone Control-System Design and Closed-Loop Tuning , 2004, Eur. J. Control.

[13]  I. D. Landau,et al.  Digital Control Systems: Design, Identification and Implementation , 2006 .

[14]  J. Sabatier,et al.  The CRONE aproach: Theoretical developments and major applications , 2006 .

[15]  G. Zames Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses , 1981 .

[16]  Pole placement design using convex optimization criteria for the flexible transmission benchmark , 1999, 1999 European Control Conference (ECC).

[17]  Brian D. O. Anderson,et al.  From Youla-Kucera to Identification, Adaptive and Nonlinear Control , 1998, Autom..

[18]  Shinji Hara,et al.  Properties of sensitivity and complementary sensitivity functions in single-input single-output digital control systems , 1988 .

[19]  Dennis S. Bernstein,et al.  Bode integral constraints, collocation, and spillover in active noise and vibration control , 1998, IEEE Trans. Control. Syst. Technol..

[20]  Ya.Z. Tsypkin Stochastic Discrete Systems With Internal Models , 1997 .