Modeling and Analysis of the TXOPLimit Efficiency with the Packet Fragmentation in an IEEE 802.11e-EDCA Network Under Noise-Related Losses

Analytical modeling and performance study of the Enhanced Distributed Channel Access (EDCA) function of the IEEE 802.11e standard has been the topic of various works available in the literature. Nevertheless, the Packet Fragmentation (PF) conceived by the IEEE 802.11 work group for decreasing the effect of noise-related losses on the performances of IEEE 802.11 networks, has not at all been taken into account in the analytical models proposed for evaluating the performance of the Opportunity Transmission Limit (TXOPLimit), which is a key parameter of the EDCA function for a Differentiated Service in an IEEE 802.11e network. While, the PF can be employed with the TXOPLimit, in order to boost the efficiency of the Contention Free Burst of both Voice and Video streams under noise-related losses. In this paper, we aim at extending the Markov chain models proposed for the IEEE 802.11e-EDCA network, in order to especially model the TXOPLimit, the PF and the Packet Error Rate. Besides, we elaborate a mathematical model to compute the saturation throughput of Access Categories, Voice, Video, Best Effort and Background. The achieved numerical results indicate, for the first time that, the PF permits boosting the TXOPLimit efficiency under noise-related losses. Thus, the saturation throughputs of both Voice and Video access categories are substantially enhanced.

[1]  Ahmed M. Sweedy,et al.  The effect of frame length, fragmentation and RTS/CTS mechanism on IEEE 802.11 MAC performance , 2010, 2010 10th International Conference on Intelligent Systems Design and Applications.

[2]  Paul Patras,et al.  A Control Theoretic Approach for Throughput Optimization in IEEE 802.11e EDCA WLANs , 2009, Mob. Networks Appl..

[3]  Zhong Fan,et al.  Throughput and QoS optimization for EDCA-based IEEE 802.11 WLANs , 2007, Wirel. Pers. Commun..

[4]  Dmitri Moltchanov,et al.  Performance models for wireless channels , 2010, Comput. Sci. Rev..

[5]  Vladimir M. Vishnevsky,et al.  Packet fragmentation in Wi-Fi ad hoc networks with correlated channel failures , 2004, 2004 IEEE International Conference on Mobile Ad-hoc and Sensor Systems (IEEE Cat. No.04EX975).

[6]  U. Narayan Bhat,et al.  An Introduction to Queueing Theory: Modeling and Analysis in Applications , 2006 .

[7]  David Malone,et al.  Measuring Transmission Opportunities in 802.11 Links , 2010, IEEE/ACM Transactions on Networking.

[8]  Sunghyun Choi,et al.  An analytic study of tuning systems parameters in IEEE 802.11e enhanced distributed channel access , 2007, Comput. Networks.

[9]  Guoqiang Mao,et al.  Saturated throughput analysis of IEEE 802.11e EDCA , 2007, Comput. Networks.

[10]  Weihua Zhuang,et al.  QoS Mechanisms for the MAC Protocol of IEEE 802.11 WLANs , 2007, Wirel. Networks.

[11]  Pushpendra Patel,et al.  A Simple but Effective Collision and Error Aware Adaptive Back-Off Mechanism to Improve the Performance of IEEE 802.11 DCF in Error-Prone Environment , 2015, Wirel. Pers. Commun..

[12]  Peter Pocta,et al.  Impact of fragmentation threshold tuning on performance of voice service and background traffic in IEEE 802.11b WLANs , 2010, 20th International Conference Radioelektronika 2010.

[13]  Michal Pióro,et al.  A distributed MAC scheme to achieve QoS in ad hoc networks , 2011, Ann. des Télécommunications.

[14]  Shivendra S. Panwar,et al.  Throughput and delay analysis for the IEEE 802.11e enhanced distributed channel access , 2006, IEEE Transactions on Communications.

[15]  Geyong Min,et al.  Modeling and analysis of TXOP differentiation in infrastructure-based WLANs , 2011, Comput. Networks.

[16]  Brahim Bensaou,et al.  Performance analysis of IEEE 802.11e contention-based channel access , 2004, IEEE Journal on Selected Areas in Communications.

[17]  Arturo Azcorra,et al.  A Throughput and Delay Model for IEEE 802.11e EDCA Under Non Saturation , 2007, Wirel. Pers. Commun..

[18]  Albert Banchs,et al.  Revisiting 802.11e EDCA performance analysis , 2007, Wirel. Pers. Commun..

[19]  Ulf Körner,et al.  An enhancement to the IEEE 802.11e EDCA providing QoS guarantees , 2006, Telecommun. Syst..

[20]  Jamal N. Al-Karaki,et al.  Quality of service support in IEEE 802.11 wireless ad hoc networks , 2004, Ad Hoc Networks.

[21]  Kye Sang Lee,et al.  Saturation Throughput Analysis of IEEE 802.11e EDCA , 2007, ICIC.

[22]  Sunghyun Choi,et al.  Analytical Study of TCP Performance over IEEE 802.11e WLANs , 2009, Mob. Networks Appl..

[23]  Marek Natkaniec,et al.  A simple but accurate throughput model for IEEE 802.11 EDCA in saturation and non-saturation conditions , 2011, Comput. Networks.

[24]  Ramón Puigjaner,et al.  Performance modelling of computer networks , 2003, LANC '03.

[25]  Dimitris Vassis,et al.  Delay Performance Analysis and Evaluation of IEEE 802.11e EDCA in Finite Load Conditions , 2005, Wirel. Pers. Commun..

[26]  Naser Movahhedinia,et al.  Supporting QoS in IEEE 802.11e wireless LANs over fading channel , 2009, Comput. Commun..

[27]  Chien-Erh Weng,et al.  The Performance Evaluation of IEEE 802.11e for QoS Support in Wireless LANs , 2013, Wirel. Pers. Commun..

[28]  Wanjiun Liao,et al.  A Differentiated Service Model for Enhanced Distributed Channel Access (EDCA) of IEEE 802.11e WLANs , 2007, Mob. Networks Appl..

[29]  Giuseppe Serazzi,et al.  Tools for Performance Evaluation of Computer Systems: Historical Evolution and Perspectives , 2010, PERFORM.

[30]  Mario Lefebvre,et al.  Applied Stochastic Processes , 2006 .

[31]  Weijia Jia,et al.  Comprehensive QoS analysis of enhanced distributed channel access in wireless local area networks , 2012, Inf. Sci..

[32]  Ulf Körner,et al.  Extending EDCA with distributed resource reservation for QoS guarantees , 2008, Telecommun. Syst..

[33]  Louiza Bouallouche-Medjkoune,et al.  Modeling and performance study of the packet fragmentation in an IEEE 802.11e-EDCA network over fading channel , 2014, Multimedia Tools and Applications.

[34]  Geyong Min,et al.  Performance analysis of the TXOP burst transmission scheme in single-hop ad hoc networks with unbalanced stations , 2011, Comput. Commun..

[35]  Myron Hlynka,et al.  Queueing Networks and Markov Chains (Modeling and Performance Evaluation With Computer Science Applications) , 2007, Technometrics.

[36]  Djamil Aïssani,et al.  Analytical Analysis of Applying Packet Fragmentation Mechanism on Both Basic and RTS/CTS Access Methods of the IEEE 802.11b DCF Network Under Imperfect Channel and Finite Load Conditions , 2014, Wirel. Pers. Commun..

[37]  Coskun Cetinkaya Service differentiation mechanisms for WLANs , 2010, Ad Hoc Networks.

[38]  Xiaolong Li,et al.  Performance Analysis of the IEEE 802.11e Wireless Networks With TCP ACK Prioritization , 2008, 2008 Proceedings of 17th International Conference on Computer Communications and Networks.

[39]  Jung-Shyr Wu,et al.  Modified EDCF to improve the performance of IEEE 802.11e WLAN , 2007, Comput. Commun..

[40]  Luca Vollero,et al.  Throughput analysis and optimal configuration of 802.11e EDCA , 2006, Comput. Networks.

[41]  Yusun Chang,et al.  Throughput enhancement of MANETs: Packet fragmentation with hidden stations and BERs , 2012, 2012 IEEE Consumer Communications and Networking Conference (CCNC).

[42]  Thomas Lagkas,et al.  Modeling and performance analysis of an alternative to IEEE 802.11e Hybrid Control Function , 2013, Telecommun. Syst..

[43]  Min-Su Kim,et al.  An Analytical Model for Throughput of IEEE 802.11e EDCA , 2004, MATA.

[44]  Tarek Saadawi,et al.  IEEE 802.11e (EDCA) analysis in the presence of hidden stations , 2011 .

[45]  Yang Xiao,et al.  Performance analysis of priority schemes for IEEE 802.11 and IEEE 802.11e wireless LANs , 2005, IEEE Transactions on Wireless Communications.

[46]  Jung-Shyr Wu,et al.  Throughput analysis of IEEE 802.11e EDCA under heterogeneous traffic , 2009, Comput. Commun..

[47]  Daniel Camps-Mur,et al.  Leveraging 802.11n frame aggregation to enhance QoS and power consumption in Wi-Fi networks , 2012, Comput. Networks.