Target Word Masking for Location Metonymy Resolution

Existing metonymy resolution approaches rely on features extracted from external resources like dictionaries and hand-crafted lexical resources. In this paper, we propose an end-to-end word-level classification approach based only on BERT, without dependencies on taggers, parsers, curated dictionaries of place names, or other external resources. We show that our approach achieves the state-of-the-art on 5 datasets, surpassing conventional BERT models and benchmarks by a large margin. We also show that our approach generalises well to unseen data.

[1]  Nigel Collier,et al.  What’s missing in geographical parsing? , 2017, Language Resources and Evaluation.

[2]  Michael Strube,et al.  Local and Global Context for Supervised and Unsupervised Metonymy Resolution , 2012, EMNLP-CoNLL.

[3]  Michael Strube,et al.  A Large Harvested Corpus of Location Metonymy , 2020, LREC.

[4]  Malvina Nissim,et al.  Metonymy Resolution as a Classification Task , 2002, EMNLP.

[5]  Omer Levy,et al.  Do Supervised Distributional Methods Really Learn Lexical Inference Relations? , 2015, NAACL.

[6]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[7]  James Pustejovsky,et al.  The Generative Lexicon , 1995, CL.

[8]  Jerry R. Hobbs,et al.  Local Pragmatics , 1987, IJCAI.

[9]  Kai Zou,et al.  EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks , 2019, EMNLP.

[10]  Sanda M. Harabagiu,et al.  UTD-HLT-CG: Semantic Architecture for Metonymy Resolution and Classification of Nominal Relations , 2007, SemEval@ACL.

[11]  Nigel Collier,et al.  Vancouver Welcomes You! Minimalist Location Metonymy Resolution , 2017, ACL.

[12]  Dan Fass,et al.  met*: A Method for Discriminating Metonymy and Metaphor by Computer , 1991, CL.

[13]  Malvina Nissim,et al.  Syntactic Features and Word Similarity for Supervised Metonymy Resolution , 2003, ACL.

[14]  Jackie Chi Kit Cheung,et al.  Can a Gorilla Ride a Camel? Learning Semantic Plausibility from Text , 2019, EMNLP.

[15]  Mona Attariyan,et al.  Parameter-Efficient Transfer Learning for NLP , 2019, ICML.

[16]  Jerry R. Hobbs,et al.  Interpretation as Abduction , 1993, Artif. Intell..

[17]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[18]  Clodoveu A. Davis,et al.  A survey on the geographic scope of textual documents , 2016, Comput. Geosci..

[19]  Luke S. Zettlemoyer,et al.  Deep Contextualized Word Representations , 2018, NAACL.

[20]  Sven Hartrumpf,et al.  On metonymy recognition for geographic information retrieval , 2008, Int. J. Geogr. Inf. Sci..

[21]  Malvina Nissim,et al.  Data and models for metonymy resolution , 2009, Lang. Resour. Evaluation.

[22]  Claire Grover,et al.  Use of the Edinburgh geoparser for georeferencing digitized historical collections , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  Nigel Collier,et al.  A pragmatic guide to geoparsing evaluation , 2018, Language Resources and Evaluation.

[24]  Malvina Nissim,et al.  SemEval-2007 Task 08: Metonymy Resolution at SemEval-2007 , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[25]  Caroline Brun,et al.  XRCE-M: A Hybrid System for Named Entity Metonymy Resolution , 2009, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[26]  Ekaterina Vylomova,et al.  Take and Took, Gaggle and Goose, Book and Read: Evaluating the Utility of Vector Differences for Lexical Relation Learning , 2015, ACL.

[27]  Richárd Farkas,et al.  GYDER: Maxent Metonymy Resolution , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[28]  Jacquet Guillaume,et al.  XRCE-M: A Hybrid System for Named Entity Metonymy Resolution , 2007, ACL 2007.

[29]  Sosuke Kobayashi,et al.  Contextual Augmentation: Data Augmentation by Words with Paradigmatic Relations , 2018, NAACL.

[30]  Michael Strube,et al.  Transforming Wikipedia into a large scale multilingual concept network , 2013, Artif. Intell..

[31]  Michael Strube,et al.  Combining Collocations, Lexical and Encyclopedic Knowledge for Metonymy Resolution , 2009, EMNLP.

[32]  David Stallard Two Kinds of Metonymy , 1993, ACL.

[33]  Udo Hahn,et al.  Understanding metonymies in discourse , 2002, Artif. Intell..

[34]  Takahiro Wakao,et al.  Metonymy: Reassessment, Survey of Acceptability, and its Treatment in a Machine Translation System , 1992, ACL.