An adaptive RBF finite collocation approach to track transport processes across moving fronts

We develop a radial basis function finite collocation method (RBF-FC) that utilises an adaptive quadtree dataset to cluster nodes around critical features in the domain, for the solution of transport processes occurring in moving front problems.An adaptive quadtree dataset is used to generate an improved distribution of solution centres in the domain, around which local Hermitian collocation systems are formed. In these local systems, the governing PDE and boundary operators of the problem are enforced by collocation. Globally, the systems are linked via reconstruction of the solution variable in terms of the solution value at neighbouring nodes producing a sparse global matrix with a solution cost that scales linearly with the number of nodes in the domain. By generating an adaptive set of nodal points with the quadtree dataset, we can reduce the global solution error in the RBF-FC method whilst maintaining low solution times.The proposed method is validated on a steady-state boundary layer capture problem and a transient advection problem (infinite Peclet number) in a 2D domain. We then couple the method with an interface tracking technique to solve the transient heat transfer in a Hele-Shaw cell viscous fingering problem. We demonstrate the effectiveness of the proposed method for the solution of convection dominated transport in problems across moving fronts.

[1]  A. Thess,et al.  Thermocapillary flow in a Hele-Shaw cell , 1997, Journal of Fluid Mechanics.

[2]  Lijian Tan,et al.  A level set simulation of dendritic solidification of multi-component alloys , 2007, J. Comput. Phys..

[3]  E. Kansa,et al.  HKBU Institutional Repository , 2018 .

[4]  Alain J. Kassab,et al.  A localized collocation meshless method (LCMM) for incompressible flows CFD modeling with applications to transient hemodynamics , 2009 .

[5]  A note on two upwind strategies for RBF‐based grid‐free schemes to solve steady convection–diffusion equations , 2009 .

[6]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[7]  Tjaart Molenkamp Marangoni convection, mass transfer and microgravity , 1998 .

[8]  J. Strain Tree Methods for Moving Interfaces , 1999 .

[9]  Shu-Man Chi,et al.  High Order Schemes for CFD:A Review , 2009 .

[10]  Guirong Liu,et al.  A LOCAL RADIAL POINT INTERPOLATION METHOD (LRPIM) FOR FREE VIBRATION ANALYSES OF 2-D SOLIDS , 2001 .

[11]  R. T. Fenner,et al.  The evolution of radial fingering in a Hele-Shaw cell using C1 continuous Overhauser boundary element method , 1995 .

[12]  Frédéric Gibou,et al.  A second order accurate level set method on non-graded adaptive cartesian grids , 2007, J. Comput. Phys..

[13]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[14]  George Beckett,et al.  A moving mesh finite element method for the two-dimensional Stefan problems , 2001 .

[15]  Xiangmin Jiao,et al.  STUDY OF CRYSTAL GROWTH AND SOLUTE PRECIPITATION THROUGH FRONT TRACKING METHOD , 2010 .

[16]  H. Power,et al.  A boundary element method for the solution of finite mobility ratio immiscible displacement in a Hele‐Shaw cell , 2015, 2103.16839.

[17]  Carlos Alberto Brebbia,et al.  A BEM formulation using B-splines: I-uniform blending functions , 1990 .

[18]  F. Gallerano,et al.  Upwind WENO scheme for Shallow Water Equations in contravariant formulation , 2012 .

[19]  Deborah Greaves,et al.  A quadtree adaptive method for simulating fluid flows with moving interfaces , 2004 .

[20]  Frédéric Gibou,et al.  A numerical scheme for the Stefan problem on adaptive Cartesian grids with supralinear convergence rate , 2009, J. Comput. Phys..

[21]  B. Fornberg,et al.  A numerical study of some radial basis function based solution methods for elliptic PDEs , 2003 .

[22]  David Stevens,et al.  The use of PDE centres in the local RBF Hermitian method for 3D convective-diffusion problems , 2009, J. Comput. Phys..

[23]  D. Stevens,et al.  An alternative local collocation strategy for high-convergence meshless PDE solutions, using radial basis functions , 2013, J. Comput. Phys..

[24]  V. G. Ferreira,et al.  A bounded upwinding scheme for computing convection-dominated transport problems , 2012 .

[25]  Alain J. Kassab,et al.  An Efficient Localized Radial Basis Function Meshless Method for Fluid Flow and Conjugate Heat Transfer , 2007 .

[26]  Juan Cheng,et al.  High Order Schemes for CFD : A Review , 2022 .

[27]  Bengt Fornberg,et al.  Stable calculation of Gaussian-based RBF-FD stencils , 2013, Comput. Math. Appl..

[28]  John S. Lowengrub,et al.  A rescaling scheme with application to the long-time simulation of viscous fingering in a Hele-Shaw cell , 2007, J. Comput. Phys..

[29]  Herve Morvan,et al.  A local hermitian RBF meshless numerical method for the solution of multi‐zone problems , 2011 .

[30]  Robert Vertnik,et al.  Meshfree explicit local radial basis function collocation method for diffusion problems , 2006, Comput. Math. Appl..

[31]  Erik Lehto,et al.  A guide to RBF-generated finite differences for nonlinear transport: Shallow water simulations on a sphere , 2012, J. Comput. Phys..

[32]  Luiz C. Wrobel,et al.  Boundary Integral Methods in Fluid Mechanics , 1995 .

[33]  V. Guinot,et al.  A finite volume upwind scheme for the solution of the linear advection–diffusion equation with sharp gradients in multiple dimensions , 2007 .

[34]  Volker John,et al.  Finite element methods for time-dependent convection – diffusion – reaction equations with small diffusion , 2008 .

[35]  Henry Power,et al.  The radial basis function finite collocation approach for capturing sharp fronts in time dependent advection problems , 2015, J. Comput. Phys..

[36]  Frédéric Gibou,et al.  A level set approach for diffusion and Stefan-type problems with Robin boundary conditions on quadtree/octree adaptive Cartesian grids , 2013, J. Comput. Phys..

[37]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[38]  M. N. Islam,et al.  Thermo-viscous fingering in quarter five-spot miscible displacements , 2011 .

[39]  Volker John,et al.  On Finite Element Methods for 3D Time-Dependent Convection-Diffusion-Reaction Equations with Small Diffusion , 2008 .

[40]  H. Power,et al.  A scalable and implicit meshless RBF method for the 3D unsteady nonlinear Richards equation with single and multi‐zone domains , 2011 .

[41]  George M. Homsy,et al.  Viscous fingering in porous media , 1987 .

[42]  Elisabeth Larsson,et al.  A new class of oscillatory radial basis functions , 2006, Comput. Math. Appl..

[43]  Frédéric Gibou,et al.  A Supra-Convergent Finite Difference Scheme for the Poisson and Heat Equations on Irregular Domains and Non-Graded Adaptive Cartesian Grids , 2007, J. Sci. Comput..