Differential dynamic programming methods for solving bang-bang control problems
暂无分享,去创建一个
[1] H. J. Kelley,et al. Rocket trajectory optimization by a second- order numerical technique. , 1969 .
[2] S. Mcreynolds,et al. On optimal control problems with discontinuities , 1968 .
[3] D. Jacobson. Second-order and Second-variation Methods for Determining Optimal Control: A Comparative Study using Differential Dynamic Programming† , 1968 .
[4] G. Franklin,et al. A second-order feedback method for optimal control computations , 1967, IEEE Transactions on Automatic Control.
[5] S. Mcreynolds. The successive sweep method and dynamic programming , 1967 .
[6] M. Athans,et al. An iterative technique for the computation of time optimal controls. , 1966 .
[7] A. Bryson,et al. A SUCCESSIVE SWEEP METHOD FOR SOLVING OPTIMAL PROGRAMMING PROBLEMS , 1965 .
[8] A. Fuller. Study of an Optimum Non-linear Control System† , 1963 .
[9] B. Paiewonsky,et al. On synthesizing optimal controls , 1963 .
[10] L. Berkovitz. Variational methods in problems of control and programming , 1961 .
[11] L. Neustadt. Synthesizing time optimal control systems , 1960 .
[12] R. Bellman,et al. On the “bang-bang” control problem , 1956 .
[13] D. Mayne. A Second-order Gradient Method for Determining Optimal Trajectories of Non-linear Discrete-time Systems , 1966 .
[14] Sanjoy K. Mitter,et al. Successive approximation methods for the solution of optimal control problems , 1966, Autom..
[15] H. Knudsen. An iterative procedure for computing time-optimal controls , 1964 .
[16] H. G. Moyer,et al. A trajectory optimization technique based upon the theory of the second variation. , 1963 .
[17] B. Paiewonsky. Time Optimal Control of Linear Systems with Bounded Controls , 1963 .
[18] Richard E. Kopp,et al. SUCCESSIVE APPROXIMATION TECHNIQUES FOR TRAJECTORY OPTIMIZATION , 1961 .
[19] R. Kálmán. THE THEORY OF OPTIMAL CONTROL AND THE CALCULUS OF VARIATIONS , 1960 .