Mathematical Analysis of a Two Strain HIV/AIDS Model with Antiretroviral Treatment

[1]  Wolfgang Hackbusch Ordinary Differential Equations , 2014 .

[2]  Agraj Tripathi,et al.  Modelling and analysis of HIV‐TB co‐infection in a variable size population , 2010 .

[3]  Xuezhi Li,et al.  Subthreshold coexistence of strains: the impact of vaccination and mutation. , 2007, Mathematical biosciences and engineering : MBE.

[4]  W. Garira,et al.  HIV/AIDS model for assessing the effects of prophylactic sterilizing vaccines, condoms and treatment with amelioration , 2006 .

[5]  Linda J. S. Allen,et al.  Competitive exclusion in SIS and SIR epidemic models with total cross immunity and density-dependent host mortality , 2005 .

[6]  Carlos Castillo-Chavez,et al.  Dynamical models of tuberculosis and their applications. , 2004, Mathematical biosciences and engineering : MBE.

[7]  Philip K Maini,et al.  A lyapunov function and global properties for sir and seir epidemiological models with nonlinear incidence. , 2004, Mathematical biosciences and engineering : MBE.

[8]  T. Corrah,et al.  Antiretroviral therapy in Africa , 2004, BMJ : British Medical Journal.

[9]  Michel Langlais,et al.  The dynamics of two viral infections in a single host population with applications to hantavirus. , 2003, Mathematical biosciences.

[10]  E. Arts,et al.  Fitness of drug resistant HIV-1: methodology and clinical implications. , 2002, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[11]  J. Watmough,et al.  Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. , 2002, Mathematical biosciences.

[12]  Brendan A. Larder,et al.  Extent of Cross-Resistance between Agents Used To Treat Human Immunodeficiency Virus Type 1 Infection in Clinically Derived Isolates , 2002, Antimicrobial Agents and Chemotherapy.

[13]  M. Nowak,et al.  Super- and Coinfection: The Two Extremes , 2002 .

[14]  Carlos Castillo-Chavez,et al.  On the Computation of R(o) and Its Role on Global Stability , 2001 .

[15]  S. H. Schmitz Effects of treatment or/and vaccination on HIV transmission in homosexuals with genetic heterogeneity , 2000 .

[16]  B G Williams,et al.  Criteria for the control of drug-resistant tuberculosis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[17]  E. Stanley,et al.  The differential infectivity and staged progression models for the transmission of HIV. , 1999, Mathematical biosciences.

[18]  William A. Harris,et al.  On the Computation of An , 1998, SIAM Rev..

[19]  J. Gerberding,et al.  Understanding, predicting and controlling the emergence of drug-resistant tuberculosis: a theoretical framework , 1998, Journal of Molecular Medicine.

[20]  D. Stram,et al.  Role of viral load in heterosexual transmission of human immunodeficiency virus type 1 by blood transfusion recipients. Transfusion Safety Study Group. , 1997, American journal of epidemiology.

[21]  C. Castillo-Chavez,et al.  To treat or not to treat: the case of tuberculosis , 1997, Journal of mathematical biology.

[22]  Carlos Castillo-Chavez,et al.  MATHEMATICAL MODELS FOR THE DISEASE DYNAMICS OF TUBERCULOSIS , 1996 .

[23]  Martin A. Nowak,et al.  Superinfection and the evolution of parasite virulence , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[24]  R. M. May,et al.  Potential of community-wide chemotherapy or immunotherapy to control the spread of HIV-1 , 1991, Nature.

[25]  Josef Hofbauer,et al.  Uniform persistence and repellors for maps , 1989 .

[26]  D. Richman,et al.  HIV with reduced sensitivity to zidovudine (AZT) isolated during prolonged therapy. , 1989, Science.

[27]  J. Carr Applications of Centre Manifold Theory , 1981 .

[28]  Baojun Song,et al.  Mathematical analysis of the transmission dynamics of HIV/TB coinfection in the presence of treatment. , 2008, Mathematical biosciences and engineering : MBE.

[29]  L. Allen,et al.  International Journal of C 2005 Institute for Scientific Numerical Analysis and Modeling Computing and Information Asymptotic Dynamics of Deterministic and Stochastic Epidemic Models with Multiple Pathogens , 2022 .

[30]  R. Baggaley,et al.  Emerging Themes in Epidemiology Analytic perspective The epidemiological impact of antiretroviral use predicted by mathematical models: a review , 2005 .

[31]  Yuliya N. Kyrychko,et al.  On a basic model of a two-disease epidemic , 2005, Appl. Math. Comput..

[32]  Carlos Castillo-Chavez,et al.  Mathematical approaches for emerging and reemerging infectious diseases , 2002 .

[33]  D. Walton,et al.  The changing face of AIDS: implications for policy and practice. , 2000 .

[34]  K. Mayer,et al.  The emergence of aids : the impact on immunology, microbiology and public health , 2000 .