Backflow Transformations via Neural Networks for Quantum Many-Body Wave Functions.

Obtaining an accurate ground state wave function is one of the great challenges in the quantum many-body problem. In this Letter, we propose a new class of wave functions, neural network backflow (NNB). The backflow approach, pioneered originally by Feynman and Cohen [Phys. Rev. 102, 1189 (1956)10.1103/PhysRev.102.1189], adds correlation to a mean-field ground state by transforming the single-particle orbitals in a configuration-dependent way. NNB uses a feed-forward neural network to learn the optimal transformation via variational Monte Carlo calculations. NNB directly dresses a mean-field state, can be systematically improved, and directly alters the sign structure of the wave function. It generalizes the standard backflow [L. F. Tocchio et al., Phys. Rev. B 78, 041101(R) (2008)10.1103/PhysRevB.78.041101], which we show how to explicitly represent as a NNB. We benchmark the NNB on Hubbard models at intermediate doping, finding that it significantly decreases the relative error, restores the symmetry of both observables and single-particle orbitals, and decreases the double-occupancy density. Finally, we illustrate interesting patterns in the weights and bias of the optimized neural network.

[1]  Giuseppe Carleo,et al.  Itinerant ferromagnetic phase of the Hubbard model , 2010, 1007.4260.

[2]  Raphael Kaubruegger,et al.  Chiral topological phases from artificial neural networks , 2017, 1710.04713.

[3]  S. R. Clark,et al.  Unifying neural-network quantum states and correlator product states via tensor networks , 2017, 1710.03545.

[4]  Martin,et al.  Quantum Monte Carlo of nitrogen: Atom, dimer, atomic, and molecular solids. , 1994, Physical review letters.

[5]  R. Martin,et al.  Effects of backflow correlation in the three-dimensional electron gas: Quantum Monte Carlo study , 1998, cond-mat/9803092.

[6]  Claudius Gros,et al.  Backflow correlations in the Hubbard model: An efficient tool for the study of the metal-insulator transition and the large-U limit , 2011, 1102.3017.

[7]  Norbert Schuch,et al.  Simulation of quantum many-body systems with strings of operators and Monte Carlo tensor contractions. , 2008, Physical review letters.

[8]  Saito Hiroki,et al.  Machine Learning Technique to Find Quantum Many-Body Ground States of Bosons on a Lattice , 2018 .

[9]  Elser,et al.  Simple variational wave functions for two-dimensional Heisenberg spin-(1/2 antiferromagnets. , 1988, Physical review letters.

[10]  J. Chen,et al.  Equivalence of restricted Boltzmann machines and tensor network states , 2017, 1701.04831.

[11]  Sandro Sorella,et al.  Role of backflow correlations for the nonmagnetic phase of the t-t(') Hubbard model , 2008, 0805.1476.

[12]  Claudius Gros,et al.  Interaction-induced Fermi-surface renormalization in the t 1 − t 2 Hubbard model close to the Mott-Hubbard transition , 2009, 0912.4197.

[13]  Lu-Ming Duan,et al.  Efficient representation of quantum many-body states with deep neural networks , 2017, Nature Communications.

[14]  Jinguo Liu,et al.  Approximating quantum many-body wave functions using artificial neural networks , 2017, 1704.05148.

[15]  F. Verstraete,et al.  Complete-graph tensor network states: a new fermionic wave function ansatz for molecules , 2010, 1004.5303.

[16]  J. Billingsley Mathematics for Control , 2005 .

[17]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[18]  Hiroki Saito,et al.  Method to Solve Quantum Few-Body Problems with Artificial Neural Networks , 2018, Journal of the Physical Society of Japan.

[19]  小谷 正雄 日本物理学会誌及びJournal of the Physical Society of Japanの月刊について , 1955 .

[20]  Kwon,et al.  Effects of three-body and backflow correlations in the two-dimensional electron gas. , 1993, Physical review. B, Condensed matter.

[21]  Carlson,et al.  Fermion Monte Carlo algorithms and liquid 3He. , 1989, Physical review letters.

[22]  Yusuke Nomura,et al.  Constructing exact representations of quantum many-body systems with deep neural networks , 2018, Nature Communications.

[23]  Markus Holzmann,et al.  Iterative backflow renormalization procedure for many-body ground-state wave functions of strongly interacting normal Fermi liquids , 2015, 1501.02199.

[24]  Raphael Kaubruegger,et al.  Generalized transfer matrix states from artificial neural networks , 2018, Physical Review B.

[25]  Garnet Kin-Lic Chan,et al.  Stripe order in the underdoped region of the two-dimensional Hubbard model , 2016, Science.

[26]  Andrey E. Antipov,et al.  Solutions of the Two-Dimensional Hubbard Model: Benchmarks and Results from a Wide Range of Numerical Algorithms , 2015, 1505.02290.

[27]  Simone Severini,et al.  Learning hard quantum distributions with variational autoencoders , 2017, npj Quantum Information.

[28]  Garnet Kin-Lic Chan,et al.  Striped spin liquid crystal ground state instability of kagome antiferromagnets. , 2012, Physical review letters.

[29]  W. Marsden I and J , 2012 .

[30]  Markus Holzmann,et al.  Nonlinear Network Description for Many-Body Quantum Systems in Continuous Space. , 2017, Physical review letters.

[31]  Dagotto,et al.  Static and dynamical properties of doped Hubbard clusters. , 1992, Physical review. B, Condensed matter.

[32]  Matthias Troyer,et al.  Neural-network quantum state tomography , 2018 .

[33]  L. Cooper,et al.  Theory of superconductivity , 1957 .

[34]  Hiroki Saito,et al.  Machine Learning Technique to Find Quantum Many-Body Ground States of Bosons on a Lattice , 2017, 1709.05468.

[35]  D. Ceperley,et al.  Backflow correlations for the electron gas and metallic hydrogen. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Richard Phillips Feynman,et al.  Energy Spectrum of the Excitations in Liquid Helium , 1956 .

[37]  Malvin H. Kalos,et al.  Green's Function Monte Carlo Method for Liquid He 3 , 1981 .

[38]  A. W. Sandvik,et al.  Variational ground states of two-dimensional antiferromagnets in the valence bond basis , 2007 .

[39]  R J Needs,et al.  Inhomogeneous backflow transformations in quantum Monte Carlo calculations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Sandro Sorella,et al.  Metal-insulator transition and strong-coupling spin liquid in the t–t′ Hubbard model , 2008, 0810.0665.

[41]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[42]  R J Needs,et al.  Quantum Monte Carlo study of the Ne atom and the Ne+ ion. , 2006, The Journal of chemical physics.

[43]  Andrew S. Darmawan,et al.  Restricted Boltzmann machine learning for solving strongly correlated quantum systems , 2017, 1709.06475.

[44]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[45]  F. Verstraete,et al.  Criticality, the area law, and the computational power of projected entangled pair states. , 2006, Physical review letters.

[46]  Claudius Gros,et al.  Spin-liquid and magnetic phases in the anisotropic triangular lattice: The case of κ − ( ET ) 2 X , 2009, 0906.2288.

[47]  Yong-Sheng Zhang,et al.  Solving frustrated quantum many-particle models with convolutional neural networks , 2018, Physical Review B.

[48]  J. Cirac,et al.  Neural-Network Quantum States, String-Bond States, and Chiral Topological States , 2017, 1710.04045.

[49]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[50]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[51]  D. Deng,et al.  Quantum Entanglement in Neural Network States , 2017, 1701.04844.

[52]  G. Vidal Entanglement renormalization. , 2005, Physical review letters.

[53]  Malvin H. Kalos,et al.  Structure of the ground state of a fermion fluid , 1981 .

[54]  Dong-Ling Deng,et al.  Machine Learning Topological States , 2016, 1609.09060.

[55]  G. Carleo,et al.  Symmetries and Many-Body Excitations with Neural-Network Quantum States. , 2018, Physical review letters.

[56]  R. Jastrow Many-Body Problem with Strong Forces , 1955 .

[57]  John C. Slater,et al.  The Theory of Complex Spectra , 1929 .

[58]  J. Ignacio Cirac,et al.  Ground-state properties of quantum many-body systems: entangled-plaquette states and variational Monte Carlo , 2009, 0905.3898.

[59]  Markus Holzmann,et al.  Many-body wavefunctions for normal liquid He3 , 2006 .

[60]  L. Duan,et al.  Efficient representation of topologically ordered states with restricted Boltzmann machines , 2018, Physical Review B.