Variational assimilation of albedo in a snowpack model and reconstruction of the spatial mass-balance distribution of an alpine glacier

Abstract Accurate knowledge of the spatial distribution of the mass balance of temperate glaciers is essential for a better understanding of the physical processes controlling the mass balance and for the monitoring of water resources. In relation to albedo variations, the shortwave radiation budget is a controlling variable of the surface energy balance of glaciers. Remotely sensed albedo observations are here assimilated in a snowpack model to improve the modeling of the spatial distribution of the glacier mass balance. The albedo observations are integrated in the snowpack simulation using a variational data assimilation scheme that modifies the surface grain conditions. The study shows that mesoscale meteorological variables and MODIS-derived albedo maps can be used to obtain a good reconstruction of the annual mass balance on Glacier de Saint-Sorlin, French Alps, on a 100 m × 100m grid. Five hydrological years within the 2000-10 decade are tested. The accuracy of the method is estimated from comparison with field measurements. Sensitivity to roughness lengths and winter precipitation fields is investigated. Results demonstrate the potential contribution of remote-sensing data and variational data assimilation to further improve the understanding and monitoring of the mass balance of snowpacks and temperate glaciers.

[1]  Steven A. Margulis,et al.  A Bayesian approach to snow water equivalent reconstruction , 2008 .

[2]  M. Sturm,et al.  Three examples where the specific surface area of snow increased over time , 2008 .

[3]  Edgar L. Andreas,et al.  A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice , 1987 .

[4]  Regine Hock,et al.  Glacier melt: a review of processes and their modelling , 2005 .

[5]  D. Lettenmaier,et al.  Assimilating remotely sensed snow observations into a macroscale hydrology model , 2006 .

[6]  E. Martin,et al.  Turbulent fluxes above the snow surface , 1998, Annals of Glaciology.

[7]  Thomas H. Painter,et al.  Interpretation of snow properties from imaging spectrometry , 2009 .

[8]  P. Wagnon,et al.  Meteorological controls on snow and ice ablation for two contrasting months on Glacier de Saint-Sorlin, France , 2009, Annals of Glaciology.

[9]  M. Gerbaux,et al.  Surface mass balance of glaciers in the French Alps: distributed modeling and sensitivity to climate change , 2005 .

[10]  E. Le Meur,et al.  Dynamic behaviour analysis of glacier de Saint Sorlin, France, from 40 years of observations, 1957–97 , 2000, Journal of Glaciology.

[11]  A. Sterl,et al.  The ERA‐40 re‐analysis , 2005 .

[12]  Kalifa Goita,et al.  A Case Study of Using a Multilayered Thermodynamical Snow Model for Radiance Assimilation , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[13]  R. Armstrong,et al.  The Physics of Glaciers , 1981 .

[14]  Pierre Etchevers,et al.  Melting of Snow Cover in a Tropical Mountain Environment in Bolivia: Processes and Modeling , 2007 .

[15]  J. Oerlemans,et al.  Response of the ice cap Hardangerjøkulen in southern Norway to the 20th and 21st century climates , 2009 .

[16]  Regine Hock,et al.  A distributed surface energy-balance model for complex topography and its application to Storglaciären, Sweden , 2005, Journal of Glaciology.

[17]  A. Gardner,et al.  A review of snow and ice albedo and the development of a new physically based broadband albedo parameterization , 2010 .

[18]  Johannes Oerlemans,et al.  Model study of the spatial distribution of the energy and mass balance of Morteratschgletscher, Switzerland , 2002, Journal of Glaciology.

[19]  Frédéric Gottardi Estimation statistique et réanalyse des précipitations en montagne Utilisation d'ébauches par types de temps et assimilation de données d'enneigement Application aux grands massifs montagneux français , 2009 .

[20]  S. Martín Wind Regimes And Heat Exchange On Glacier De Saint-Sorlin , 1975, Journal of Glaciology.

[21]  Niko E. C. Verhoest,et al.  Satellite-Scale Snow Water Equivalent Assimilation into a High-Resolution Land Surface Model , 2010 .

[22]  E. Martin,et al.  A computer-based system simulating snowpack structures as a tool for regional avalanche forecasting , 1999, Journal of Glaciology.

[23]  Christian Vincent,et al.  Influence of climate change over the 20th Century on four French glacier mass balances , 2002 .

[24]  Shfaqat Abbas Khan,et al.  Spatial and Temporal Melt Variability at Helheim Glacier, East Greenland, and Its Effect on Ice Dynamics , 2010 .

[25]  Zong-Liang Yang,et al.  Validation of the energy budget of an alpine snowpack simulated by several snow models (Snow MIP project) , 2004, Annals of Glaciology.

[26]  Y. Arnaud,et al.  Monitoring spatial and temporal variations of surface albedo on Saint Sorlin Glacier (French Alps) using terrestrial photography , 2011 .

[27]  P. Wagnon,et al.  Annual cycle of energy balance of Zongo Glacier, Cordillera Real, Bolivia , 1999 .

[28]  P. Wagnon,et al.  Understanding and modeling the physical processes that govern the melting of snow cover in a tropical mountain environment in Ecuador , 2009 .

[29]  M. Clark,et al.  Snow Data Assimilation via an Ensemble Kalman Filter , 2006 .

[30]  E. Martin,et al.  An energy and mass model of snow cover suitable for operational avalanche forecasting , 1989 .

[31]  J. Cogley,et al.  Mass balance of glaciers other than the ice sheets , 1998, Journal of Glaciology.

[32]  Y. Arnaud,et al.  Subpixel monitoring of the seasonal snow cover with MODIS at 250 m spatial resolution in the Southern Alps of New Zealand: Methodology and accuracy assessment , 2009 .

[33]  P. Courtier,et al.  The ECMWF implementation of three‐dimensional variational assimilation (3D‐Var). I: Formulation , 1998 .

[34]  W. Greuell,et al.  Variations with elevation in the surface energy balance on the Pasterze (Austria) , 2001 .

[35]  Pierre Etchevers,et al.  Parameter sensitivity in simulations of snowmelt , 2004 .

[36]  E. Martin,et al.  A meteorological estimation of relevant parameters for snow models , 1993 .

[37]  Gérald Desroziers,et al.  Use of randomization to diagnose the impact of observations on analyses and forecasts , 2005 .

[38]  E. Brun,et al.  A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting , 1992, Journal of Glaciology.

[39]  Y. Lejeune Apports des modèles de neige CROCUS et de sol ISBA à l'étude du bilan glaciologique d'un glacier tropical et du bilan hydrologique de son bassin versant , 2009 .

[40]  E. L. Meur,et al.  A two-dimensional shallow ice-flow model of Glacier de Saint-Sorlin, France , 2003, Journal of Glaciology.

[41]  E. L. Meur,et al.  Disappearance of an Alpine glacier over the 21st Century simulated from modeling its future surface mass balance , 2007 .

[42]  J. Corripio Snow surface albedo estimation using terrestrial photography , 2004 .

[43]  H. Douville,et al.  A comparison of four snow models using observations from an alpine site , 1999 .

[44]  V. Masson,et al.  The AROME-France Convective-Scale Operational Model , 2011 .

[45]  Delphine Six,et al.  Glacier melt, air temperature and energy balance in different climates: the Bolivian Tropics, the French Alps and northern Sweden , 2008 .

[46]  Ecmwf Newsletter,et al.  EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS , 2004 .

[47]  J.,et al.  A 1 year record of global radiation and albedo in the ablation zone of Morteratschgletscher, Switzerland , 1998, Journal of Glaciology.

[48]  M. Sharp,et al.  Measurement and parameterization of aerodynamic roughness length variations at Haut Glacier d'Arolla, Switzerland , 2006 .

[49]  Jan-Gunnar Winther,et al.  Intercomparison and validation of snow albedo parameterization schemes in climate models , 2005 .

[50]  R. Arthern,et al.  Initialization of ice-sheet forecasts viewed as an inverse Robin problem , 2010, Journal of Glaciology.

[51]  Stephen G. Warren,et al.  Optical Properties of Snow , 1982 .